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Chapter 1

ODE Models in Science

1

This lecture deals with the numerical solution of systems of ordinary differ-
ential equations (ODEs), i.e.,

y′(x) = f(x, y(x)),

or written component-wise

y′1(x) = f1(x, y1(x), . . . , yn(x))
y′2(x) = f2(x, y1(x), . . . , yn(x))

...
y′n(x) = fn(x, y1(x), . . . , yn(x)).

Additional conditions are required to achieve a unique solution. On the one
hand, initial value problems (IVPs) demand

y(x0) = y0

at a specific initial point x0 together with a predetermined value y0 ∈ Rn.
Figure 1 outlines the task. On the other hand, boundary value problems
(BVPs) impose a condition on an initial state as well as a final state, i.e.,

r(y(a), y(b)) = 0

with a given function r : Rn×Rn → R
n and an interval [a, b]. For example,

periodic boundary conditions read y(a)− y(b) = 0.
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Figure 1: Initial value problem of an ODE.

An ODE of nth order reads

z(n)(x) = g(x, z(x), z′(x), z′′(x), . . . , z(n−1)(x)).

We obtain an equivalent system of first order by arranging

y1 := z, y2 := z′, y3 := z′′, . . . , yn := z(n−1).

It follows the system

y′1 = y2, y′2 = y3, . . . , y′n−1 = yn, y′n = g(x, y1, . . . , yn).

Thus we consider without loss of generality systems of first order only in
this lecture.

We start with some examples of ODE models resulting in various appli-
cations ranging from science (chemical reaction kinetics) to classical me-
chanics (N -body problem) and electrical engineering (electric circuits). In
all cases, mathematical models are used to describe (approximatively) real
processes. Due to simplifications and model assumptions, the exact solu-
tion of the ODE models represents an approximation of the real process. In
most cases, the independent variable x represents the time.
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1.1 Chemical reaction kinetics

The radioactive decay represents a process depending on time. For example,
the decay of a radon isotope occurs via

Rn-222 −→ Po-218 + He-4 (α-particle)

with the rate T1/2 = 3.825 days. Let n be the number of particles of the
isotope. The corresponding ODE model reads

n′(t) = −kn(t), n(0) = n0,

where an initial value problem is formulated. The involved constant is
k = ln 2/T1/2. In this simple example, the solution of the ODE can be
determined analytically, i.e.,

n(t) = n0e
−kt.

Although the number of particles is an integer in reality, it is reasonable to
apply real numbers in the model. The radioactive decay can be seen as a
unimolecular reaction.

Chemical processes typically include bimolecular reactions

A + B −→ C + D.

The special case B = C represents a catalysis. Let cS be the concentration of
the substance S. The corresponding system of ordinary differential equations
reads

c′A(t) = −k cA(t)cB(t)
c′B(t) = −k cA(t)cB(t)
c′C(t) = +k cA(t)cB(t)

c′D(t) = +k cA(t)cB(t).

(1.1)

The reaction rate coefficient k > 0 characterises the probability of the chem-
ical reaction in case of a collision between the molecules A and B. The co-
efficient k can also be seen as velocity of the reaction. The physical unit
of the parameter k is litre/(s mol). According initial conditions have to be
specified for the system (1.1).
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Now we consider a set of m general chemical reactions involving n different
species A1, . . . ,An (molecules/atoms) in total

α1jA1 + α2jA2 + · · ·+ αnjAn
kj−→ γ1jA1 + γ2jA2 + · · ·+ γnjAn

for j = 1, . . . ,m or, equivalently,

n∑
i=1

αijAi
kj−→

n∑
i=1

γijAi for j = 1, . . . ,m. (1.2)

The parameters αij, γij ∈ N0 represent the stoichiometric constants. The
jth reaction exhibits the rate coefficient kj ∈ R+. Consequently, the result-
ing mathematical model reads

dcAi

dt
=

m∑
j=1

(γij − αij)kj

n∏
l=1

cAl

αlj for i = 1, . . . , n ,

which represents a system of n ordinary differential equations for the un-
known concentrations. The evaluation of the right-hand side can be done
automatically, if the corresponding chemical reactions (1.2) are specified.

The hydrolysis of urea represents an example of a more complex chemical
reaction. Thereby, urea is combining with water and results to ammonium
carbonate. To achieve a sufficiently fast reaction, the help of the enzyme
urease is necessary, since it decreases the energy of activation, i.e., the
enzyme acts as a catalyser. The complete chemical reaction is given by the
formula

(NH2)2CO+ 2 H2O+ urease −→ (NH4)2CO3 + urease. (1.3)

This relation represents a complex reaction, since it consists of three simpler
reactions. In the following, we use the abbreviations: U: urea, E: urease
(enzyme), UE: combination of urea and urease, A: ammonium carbonate.
The reaction (1.3) includes the three parts

U + E
k1−→ UE

UE
k2−→ U+ E

UE + 2 H2O
k3−→ A+ E.

(1.4)
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The parameters k1, k2, k3 specify the velocities of the reactions. The three
parts are complex reactions itself, i.e., they proceed as chains of simple
reactions, which are not considered here.

We construct a mathematical model for this system of reactions. Let cS
be the concentration of the substance S with unit mol/litre (mol/l). The
transient behaviour of the concentrations shall be determined. Since the
reaction takes place in water and the concentrations of the other substances
is relatively low, we assume the concentration of water to be constant in
time (55.56 mol/l). The velocities of the reactions are

k1 = 3.01 l
mol·s

, k2 = 0.02 1
s , k3 = 0.1 1

s . (1.5)

Consequently, we obtain a system of four ODEs for the four unknown con-
centrations

c′U = − k1cUcE + k2cUE

c′E = − k1cUcE + k2cUE + k3cUE

c′UE = k1cUcE − k2cUE − k3cUE

c′A = k3cUE.

(1.6)

This system exhibits a unique solution for predetermined initial values. We
apply the initial conditions

cU = 0.1 mol
l
, cE = 0.02 mol

l
, cUE = cA = 0. (1.7)

Like in many other applications, an analytical solution of this system of
ODEs is not feasible, i.e., we do not achieve an explicit formula for the
unknown solution. Thus we employ a numerical simulation to determine a
solution approximately. Figure 2 illustrates the results.

On the one hand, the concentration of urea decays to zero, since this sub-
stance is decomposed in the hydrolysis. On the other hand, the product
ammonium carbonate is generated until no more urea is present. The con-
centration of the enzyme urease decreases at the beginning. According to
an enzyme, the initial amount of urease is recovered at the end.
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Figure 2: Simulation of the hydrolysis of urea.

1.2 Electric circuits

As a simple example of an electric circuit, we consider an electromagnetic
oscillator, which consists of a capacitance C and inductance L and a resis-
tance R, see Figure 3 (left). Kirchhoff’s current law yiels the relation

IC + IL + IR = 0.

Kirchhoff’s voltage law implies U := UC = UL = UR. Each basic element of
the circuit exhibits a voltage-current relation

CU ′
C = IC , LI ′L = UL, R =

UR

IR
.

It follows a linear system of two ODEs

U ′ = − 1
C IL − 1

RCU
I ′L = 1

LU
(1.8)
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Figure 3: Electromagnetic oscillator with (right) and without (left) current source.

for the two unknown functions U and IL. Further calculations yield an ODE
of second order for the unknown voltage

U ′′ + 1
RCU

′ + 1
LCU = 0.

If the resistance is sufficiently large, the solution becomes a damped oscil-
lation

U(t) = e−
1

2RC t
[
A sin

(
1√
LC
t
)
+B cos

(
1√
LC
t
)]
.

The constants A and B are determined by initial conditions.

The system (1.8) of ODEs is autonomous. We obtain a time-dependent
system by adding an independent current source to the circuit, see Figure 3
(right). We apply the input

Iin(t) = I0 sin (ω0t) .

The corresponding ODE model becomes

U ′ = − 1
C IL − 1

RCU − 1
C Iin(t)

I ′L = 1
LU.

(1.9)

The system (1.9) exhibits periodic solutions with the rate T = 2π/ω0. Hence
we can impose boundary conditions U(0) = U(T ) and IL(0) = IL(T ). Res-
onance occurs in the case ω0 = 1/

√
LC. Figure 4 shows the solutions of

initial value problems corresponding to (1.8) and (1.9), respectively.

To demonstrate the model of a more complex electric circuit, we consider
the Colpitts oscillator depicted in Figure 5. Mathematical modelling yields
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Figure 4: Solution U of ODE (1.8) (left) and ODE (1.9) (right).

an implicit system of four ODEs including four unknown node voltages:
1 0 0 0
0 C1 + C3 −C3 −C1

0 −C3 C2 + C3 + C4 −C2

0 −C1 −C2 C1 + C2



U ′
1

U ′
2

U ′
3

U ′
4



+


R2

L (U1 − U2)−R2U
′
op

1
R2
(U1 − Uop)−

(
Is +

Is
bc

)
g(U4 − U2) + Isg(U4 − U3)

1
R4
U3 −

(
Is +

Is
be

)
g(U4 − U3) + Isg(U4 − U2)

1
R3
U4 +

1
R1
(U4 − Uop) +

Is
be
g(U4 − U3) +

Is
bc
g(U4 − U2)

 =


0
0
0
0

 .

Several technical parameters appear in the system. The current-voltage
relation corresponding to the bipolar transistor reads

g(U) := exp

(
U

Uth

)
− 1.

Thus the system is nonlinear.

1.3 Multibody problem

We consider the two-body problem for two particles with masses m1,m2.
Let X⃗i = (xi, yi, zi) be the location of the ith mass. The locations and the
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Figure 5: Electric circuit of the Colpitts oscillator.

velocities of the particles depend on time. The gravitation generates forces
between the masses. Newton’s laws of motion yield the ODEs of second
order

m1X⃗
′′
1 (t) = G m1m2

|X⃗1(t)−X⃗2(t)|3
(X⃗2(t)− X⃗1(t))

m2X⃗
′′
2 (t) = G m1m2

|X⃗1(t)−X⃗2(t)|3
(X⃗1(t)− X⃗2(t))

with the gravitational constant G > 0. Introducing the velocities V⃗i := X⃗ ′
i

implies a system of first order

X⃗ ′
1 = V⃗1
V⃗ ′
1 = G m2

|X⃗1−X⃗2|3
(X⃗2 − X⃗1)

X⃗ ′
2 = V⃗2
V⃗ ′
2 = G m1

|X⃗1−X⃗2|3
(X⃗1 − X⃗2)

including twelve ODEs. The system is autonomous. Initial conditions for
X⃗i(0), V⃗i(0) have to be specified. Figure 6 depicts the trajectories of a two-
body problem with different masses m1 > m2. The movement typically
proceeds approximatively along ellipses.
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Figure 6: Trajectories (locations) of a two-body problem with masses m1 > m2 from two
different viewpoints (solid line: first body, points: second body).

Moreover, the two-body problem can be solved analytically. In constrast,
we arrange the N -body problem now, where N masses m1, . . . ,mN are
involved. Let F⃗ij be the gravitational force on the ith mass caused by the
jth mass. Newton’s laws of motion imply

miX⃗
′′
i =

N∑
j=1,j ̸=i

F⃗ij =
N∑

j=1,j ̸=i

G
mimj

|X⃗j − X⃗i|3
(X⃗j − X⃗i)

for i = 1, . . . , N . It follows a system of 6N ODEs of first order

X⃗ ′
i = V⃗i

V⃗ ′
i = G

N∑
j=1,j ̸=i

mj

|X⃗j − X⃗i|3
(X⃗j − X⃗i) for i = 1, . . . , N.

The N -body problem cannot be solved analytically. Thus we require nu-
merical methods to solve the problem.

1.4 Further models

In the previous sections, we have considered problems in the fields of chem-
ical reactions, electrical engineering and mechanics. Systems of ODEs also
appear in the following applications:
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• biology (predator-prey models, epidemic models, etc.),

• simulation of war battles (Lanchester’s combat models),

• semi-discretisation of partial differential equations,

• and others.

In financial mathematics, for example, modelling yields stochastic (ordi-
nary) differential equations. Numerical methods for the stochastic differen-
tial equations represent improvements of the techniques for ODEs. Hence
knowledge on ODE methods is necessary to deal with stochastic systems.

Further reading on ODE models:

P. Deuflhard, F. Bornemann: Scientific Computing with Ordinary Differen-
tial Equations. Springer, New York 2002.

M. Braun: Differential Equations and Their Applications. (4th edition)
Springer, Berlin 1993.
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Chapter 2

Short Synopsis on Theory of ODEs

2

In this chapter, we review some basic results on existence and uniqueness
corresponding to solutions of ODEs. Further interesting properties are also
considered.

2.1 Linear differential equations

An initial value problem of a linear (inhomogeneous) ODE reads

y′(x) = a(x)y(x) + b(x), y(x0) = y0.

The corresponding solution exhibits the formula

y(x) = exp

(∫ x

x0

a(s) ds

)
·
(
y0 +

∫ x

x0

exp

(
−
∫ s

x0

a(t) dt

)
b(s) ds

)
,

which can be verified straightforward. A more explicit formula of the solu-
tion is only obtained if the involved integrals can be solved analytically.

In case of linear (inhomogeneous) systems of ODEs, the initial value problem
becomes

y′(x) = A(x)y(x) + b(x), y(x0) = y0

with predetermined functions A : R → R
n×n and b : R → R

n. Numerical
methods are required to solve the system. We obtain a formula of the

12



solution in case of constant coefficients A ∈ Rn×n, i.e.,

y(x) = exp(A(x− x0)) ·
(
y0 +

∫ x

x0

exp(−A(s− x0))b(s) ds

)
.

The involved integral over a vector is evaluated component-wise. The matrix
exponential is defined by

exp(At) :=
∞∑
k=0

tk

k!
Ak,

where the sum converges for each t ∈ R with respect to an arbitrary matrix
norm. In general, the matrix exponential cannot be evaluated analytically.
Thus a numerical scheme is necessary. Further investigations show that
numerical techniques avoiding the matrix exponential have to be preferred
for solving the linear system of ODEs.

In conclusion, an analytical solution of linear ODEs is not always feasible.
Hence numerical methods yield the corresponding solutions. Of course, this
holds even more in case of nonlinear ODEs.

2.2 Existence and uniqueness

We consider initial value problems of systems of ODEs

y′(x) = f(x, y(x)), y(x0) = y0 (2.1)

for functions f : G→ R
n with G ⊆ R×Rn and (x0, y0) ∈ G. A function y

represents a solution of this problem if and only if

y(x) = y0 +

∫ x

x0

f(s, y(s)) ds (2.2)

holds for all relevant x.

The theorem of Peano just requires a continuous right-hand side f . How-
ever, this theorem yields only the existence and not the uniqueness of a
solution. To apply numerical methods, we need both properties.
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In the following, we assume the Lipschitz-condition

∥f(x, y)− f(x, z)∥ ≤ L · ∥y − z∥ (2.3)

for all x, y, z located in G with a constant L > 0. The involved vector norm
is arbitrary. Concerning the uniqueness of a solution to an initial value
problem (2.1), it holds the following result.

Theorem 1 Let G ⊆ R × R
n be an open set and let f : G → R

n be a
continuous function satisfying the Lipschitz-condition (2.3). Consider two
solutions φ, ψ : I → R

n of the ODE system y′ = f(x, y) on an interval
I ⊆ R. If φ(x0) = ψ(x0) holds for some x0 ∈ I, then it follows φ(x) = ψ(x)
for all x ∈ I.

Outline of the proof:

Let φ, ψ : I → R
n be two solutions of y′ = f(x, y). We show that the condi-

tion φ(x̂) = ψ(x̂) for an arbitrary x̂ ∈ I implies φ ≡ ψ in a neighbourhood
of x̂. It holds

φ(x) = φ(x̂) +

∫ x

x̂

f(s, φ(s)) ds, ψ(x) = ψ(x̂) +

∫ x

x̂

f(s, ψ(s)) ds.

The Lipschitz condition yields

∥φ(x)− ψ(x)∥ ≤
∣∣∣∣∫ x

x̂

∥f(s, φ(s))− f(s, ψ(s))∥ ds

∣∣∣∣
≤ L

∣∣∣∣∫ x

x̂

∥φ(s)− ψ(s)∥ ds

∣∣∣∣ .
We define

M(x) := sup{∥φ(s)− ψ(s)∥ : |s− x̂| ≤ |x− x̂|}.

It follows
∥φ(t)− ψ(t)∥ ≤ L|t− x̂|M(t) ≤ L|x− x̂|M(x)

for |t− x̂| ≤ |x− x̂| and thus

M(x) ≤ L|x− x̂|M(x).

14



For |x − x̂| < 1/(2L), we obtain M(x) ≤ 1
2M(x) and thus M(x) = 0 for

those x.

Now we consider the assumption φ(x0) = ψ(x0). Let

x1 := sup
{
s ∈ I : φ|[x0,s] = ψ|[x0,s]

}
.

Since both functions are continuous, it follows φ(x1) = ψ(x1). If x1 is not
equal to the right boundary of the interval, then a contradiction appears
with respect to the previous result, which states that the functions are equal
in a complete neighbourhood of x1. The same argumentation can be applied
to the left boundary x ≤ x0. □

The theorem of Picard-Lindelöf yields a result on the existence.

Theorem 2 (Picard-Lindelöf) Let G ⊆ R×Rn be an open set and let f :
G → R

n be a continuous function satisfying the Lipschitz-condition (2.3).
Then for each (x0, y0) ∈ G it exists a real number ε > 0 and a solution
φ : [x0 − ε, x0 + ε] → R

n of the initial value problem (2.1).

Outline of the proof:

It exists r > 0 such that the set

V := {(x, y) ∈ R×Rn : |x− x0| ≤ r, ∥y − y0∥ ≤ r}

satisfies V ⊂ G. Since f is continuous and V is compact, it exists M > 0
such that

∥f(x, y)∥ ≤M for all (x, y) ∈ V.

We define ε := min{r, r/M} and I := [x0 − ε, x0 + ε].

A function φ satisfies the initial value problem if and only if

φ(x) = y0 +

∫ x

x0

f(s, φ(s)) ds

holds for all x ∈ I. We define functions φk : I → R
n via the iteration

φk+1(x) := y0 +

∫ x

x0

f(s, φk(s)) ds

15



using the starting function φ0(x) ≡ y0. For x ∈ I, it follows

∥φk+1(x)− y0∥ ≤
∣∣∣∣∫ x

x0

∥f(s, φk(s))∥ ds

∣∣∣∣ ≤M |x− x0| ≤Mε ≤ r

provided that φk lies in V . By induction, the functions φk are well-defined.

Furthermore, it follows by induction

∥φk(x)− φk−1(x)∥ ≤MLk−1 |x− x0|k

k!
for each x ∈ I.

Hence it holds

∥φk(x)− φk−1(x)∥ ≤ M

L
· (Lε)

k

k!
uniformly in I. The right-hand side exhibits terms of exponential series
for eLε. It follows that (φk)k∈N is a Cauchy-sequence uniformly for x ∈ I.
Consequently, the sequence (φk)k∈N converges uniformly to a continuous
function φ. Moreover, we obtain

∥f(x, φ(x))− f(x, φk(x))∥ ≤ L · ∥φ(x)− φk(x)∥.

Thus the sequence (f(x, φk(x))k∈N converges uniformly to f(x, φ(x)). It
follows

φ(x) = lim
k→∞

φk(x) = y0 + lim
k→∞

∫ x

x0

f(s, φk(s)) ds

= y0 +

∫ x

x0

lim
k→∞

f(s, φk(s)) ds = y0 +

∫ x

x0

f(s, φ(s)) ds

and the proof is completed. □

The theorem of Picard-Lindelöf also includes a method for the construction
of the solution by the iteration. We analyse this iteration further. We define

F (φ) := y0 +

∫ x

x0

f(s, φ(s)) ds.

The fixed point φ = F (φ) represents a solution of the initial value prob-
lem (2.1). The corresponding iteration reads φk+1 = F (φk). We obtain for

16



x0 ≤ x ≤ x1 :

∥F (φ)(x)− F (ψ)(x)∥ ≤
∫ x

x0

∥f(s, φ(s))− f(s, ψ(s))∥ ds

≤ L

∫ x

x0

∥φ(s)− ψ(s)∥ ds

≤ L

∫ x1

x0

∥φ(s)− ψ(s)∥ ds

≤ L(x1 − x0) max
s∈[x0,x1]

∥φ(s)− ψ(s)∥.

It follows

max
s∈[x0,x1]

∥F (φ)(s)− F (ψ)(s)∥ ≤ L(x1 − x0) max
s∈[x0,x1]

∥φ(s)− ψ(s)∥.

Hence the mapping F is contractive with respect to the maximum norm if
x1 − x0 <

1
L holds. The theorem of Banach implies the convergence of the

Picard-Lindelöf iteration and the existence of a unique fixed point.

However, the iteration requires a subsequent solution of integrals, which
makes it disadvantageous in practice. Furthermore, we may be forced to
use small subintervals.

Finally, we cite a theorem concerning the maximum interval of the existence
of a solution to the initial value problem (2.1).

Theorem 3 Let the assumptions of Theorem 2 be fulfilled. Then it exists
a maximum interval (α, β) with α < x0 < β such that a unique solution
φ : (α, β) → R

n of the initial value problem (2.1) exists. It holds either
β = ∞ or β <∞ together with

{(x, φ(x)) : x ∈ [x0, β)} ∩ {(x, y) ∈ G : x = β} = ∅.

Analogue conditions follow for α.

If a function f : R × R
n → R

n is continuous everywhere, then β < ∞
implies that the solution of the initial value problem becomes unbounded
near x = β.

17



2.3 Perturbation analysis

We analyse the condition of initial value problems of ODEs, i.e., the sensi-
tivity of the solutions in dependence on the data. The data are the initial
values y0 and the right-hand side f . (Differences in the value x0 can be
described by different right-hand sides.)

We consider the solution y(x) of the initial value problem (2.1) and the
solution z(x) of the perturbed initial value problem

z′(x) = f(x, z(x)) + δ(x), z(x0) = z0.

Let the function δ(x) be continuous. We estimate the resulting difference
y(x) − z(x) between the unperturbed and the perturbed solution in terms
of the perturbations

ρ := ∥y0 − z0∥, ε := max
t∈[x0,x1]

∥δ(t)∥

using some vector norm.

The estimate is based on the following version of Gronwall’s lemma.

Lemma 1 Assume that m(x) is a non-negative, continuous function and
that ρ, ε ≥ 0, L > 0. Then the integral inequality

m(x) ≤ ρ+ ε(x− x0) + L

∫ x

x0

m(s) ds (2.4)

implies the estimate

m(x) ≤ ρeL(x−x0) +
ε

L

(
eL(x−x0) − 1

)
. (2.5)

Proof:

At first we define the function

q(x) := e−Lx

∫ x

x0

m(t) dt,

18



which is differentiable as m(x) is continuous and has the derivative

q′(x) = −Le−Lx

∫ x

x0

m(t) dt+ e−Lxm(x).

Solving for m(x), we get the relations

m(x) = eLxq′(x) + L

∫ x

x0

m(t) dt, (2.6)

= eLxq′(x) + LeLxq(x) = (eLxq(x))′. (2.7)

We now insert (2.6) in (2.4) and obtain

eLxq′(x) ≤ ρ+ ε(x− x0) (2.8)

and solving for q′(x) we get

q′(x) ≤ (ρ− εx0)e
−Lx + εxe−Lx.

Hence, performing integration, the inequality

q(x) ≤ −ρ− εx0
L

(
e−Lx − e−Lx0

)
+ ε

∫ x

x0

te−Lt dt (2.9)

holds, where the integral can be calculated via integration by parts∫ x

x0

te−Lt dt = − 1

L
te−Lt

∣∣∣∣x
x0

+
1

L

∫ x

x0

e−Lt dt

= − 1

L

(
xe−Lx − x0e

−Lx0
)
− 1

L2

(
e−Lx − e−Lx0

)
.

Finally, inserting (2.8),(2.9) into (2.7) we end up with

m(x) ≤ −(ρ− εx0)
(
1− eL(x−x0)

)
− εx+ εx0e

L(x−x0)

− ε

L

(
1− eL(x−x0)

)
+ (ρ+ ε(x− x0))

= ρeL(x−x0) +
ε

L

(
eL(x−x0) − 1

)
,

which is the statement (2.5). □
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Using m(x) := ∥y(x) − z(x)∥, the assumptions of Gronwall’s lemma are
fulfilled, because it holds

y(x)− z(x) = y0 − z0 −
∫ x

x0

δ(s) ds+

∫ x

x0

f(s, y(s))− f(s, z(s)) ds

and thus

∥y(x)− z(x)∥ ≤ ∥y0 − z0∥+
∫ x

x0

∥δ(s)∥ ds

+

∫ x

x0

∥f(s, y(s))− f(s, z(s))∥ ds

≤ ∥y0 − z0∥+
(

max
t∈[x0,x1]

∥δ(t)∥
)
(x− x0)

+ L

∫ x

x0

∥y(s)− z(s)∥ ds

for x0 ≤ x ≤ x1. Thus Gronwall’s lemma yields

∥y(x)− z(x)∥ ≤ ρeL(x−x0) +
ε

L

(
eL(x−x0) − 1

)
for x0 ≤ x ≤ x1. We recognise that the problem is well-posed, since it
depends continuously on the data. Nevertheless, the difference can increase
exponentially for increasing x. This is not always the case but may happen.

If the perturbation appears only in the initial values (δ ≡ 0 ⇒ ε = 0), then
the corresponding estimate reads

∥y(x)− z(x)∥ ≤ ∥y(x0)− z(x0)∥ · eL(x−x0) for each x ≥ x0. (2.10)

This estimate implies again that the solution y(x) depends continuously on
its initial value y(x0) = y0 for fixed x. Moreover, the dependence becomes
smooth for a smooth right-hand side f . We denote the dependence of the
solution on the inital values via y(x; y0).

Theorem 4 Suppose that f is continuous with respect to x and that the
partial derivatives of f with respect to y exist and are continuous. Then the
solution y(x; y0) is smooth with respect to y0. The derivatives

Ψ(x) :=
∂y

∂y0
(x; y0) ∈ Rn×n
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are the solution of the initial value problem of the matrix differential equa-
tion

Ψ′(x) =
∂f

∂y
(x, y(x; y0)) ·Ψ(x), Ψ(x0) = I (2.11)

with the identity I ∈ Rn×n.

The proof can be found in: Hairer, Nørsett, Wanner: Solving Ordinary
Differential Equations. Volume 1. Springer.

We just show the second statement of the theorem. Differentiating the
original system of ODEs

∂

∂x
y(x; y0) = f(x, y(x; y0))

with respect to the initial values yields

∂

∂y0

∂

∂x
y(x; y0) =

∂

∂y0
f(x, y(x; y0))

∂

∂x

∂y

∂y0
(x; y0) =

∂f

∂y
(x, y(x; y0)) ·

∂y

∂y0
(x; y0)

∂

∂x
Ψ(x) =

∂f

∂y
(x, y(x; y0)) ·Ψ(x).

The initial value y(x0; y0) = y0 implies the initial condition ∂y
∂y0

(x0; y0) = I.

The matrix differential equation consists of n separate systems of ODEs
(with dimension n each). Moreover, the matrix differential equation ex-
hibits a linear structure. The matrix differential equation can be solved
numerically in combination with the original system of ODEs (2.1). Alter-
natively, numerical differentiation is feasible.
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Chapter 3

One-Step Methods

3

We consider numerical methods for the initial value problems introduced in
the previous chapter. We start with one-step methods, whereas multi-step
methods are discussed in a later chapter.

3.1 Preliminaries

We want to solve an initial value problem (2.1) of a system of ODEs nu-
merically in some interval x ∈ [x0, xend]. All numerical methods for initial
value problems, which we consider in this lecture, apply a finite set of grid
points

x0 < x1 < x2 < x3 < · · · < xN−1 < xN = xend.

A feasible choice are equidistant grid points

xi := x0 + ih with h :=
xend − x0

N
for i = 0, 1, . . . , N.

Numerical solutions yi ≈ y(xi) are computed successively. In a one-step
method, the dependence of the values is just

y0 −→ y1 −→ y2 −→ · · · −→ yN−1 −→ yN .

In contrast, a multi-step method with k steps exhibits the dependence

yi−k, yi−k+1, . . . , yi−2, yi−1 −→ yi for i = k, k + 1, . . . , N.
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Thereby, the first values y1, . . . , yk−1 have to be provided by another scheme
in case of k > 1. Remark that a one-step method represents a special case
of a multi-step method with k = 1.

A general one-step method can be written in the form

yi+1 = yi + hiΦ(xi, yi, hi), (3.1)

where the function Φ depends on the scheme as well as the right-hand side
function f .

3.2 Elementary integration schemes

Most of the methods for the initial value problem (2.1) are based on an
approximation of the corresponding integral equation (2.2). In the interval
[x0, x0 + h], we obtain

y(x0 + h) = y0 +

∫ x0+h

x0

f(s, y(s)) ds

= y0 + h

∫ 1

0

f(x0 + sh, y(x0 + sh)) ds.

(3.2)

Now the integral on the right-hand side is replaced by a quadrature rule.
The problem is that the function y, which appears in the integrand, is
unknown a priori.

Since h is small, we consider simple quadrature rules. We discuss the fol-
lowing four examples, see Figure 7:

(a) rectangle (left-hand):

The approximation becomes

y1 = y0 + hf(x0, y0).

This scheme is called the (explicit) Euler method. It is the most simple
method, which is feasible. Given the initial value y(x0) = y0, the approxi-
mation y1 is computed directly by just a function evaluation of f .
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(a) (b) (c) (d)

Figure 7: Elementary quadrature rules: (a) rectangle (left-hand), (b) rectangle (right-
hand), (c) trapezoidal rule, (d) midpoint rule.

(b) rectangle (right-hand):

Now the scheme reads

y1 = y0 + hf(x0 + h, y1). (3.3)

This technique is called the implicit Euler method. The unknown value y1
appears on both sides of the relation. In general, we cannot achieve an
explicit formula for y1. The formula (3.3) represents a nonlinear system of
algebraic equations for the unknown y1, i.e., the value y1 is defined implicitly.
For example, a Newton iteration yields an approximative solution. Hence
the computational effort of one integration step becomes much larger than
in the explicit Euler method.

(c) trapezoidal rule:

If the integral is approximated by a trapezoid, the technique becomes

y1 = y0 +
h

2
(f(x0, y0) + f(x0 + h, y1)) .

This approach results again in an implicit method. The computational effort
of one integration step is nearly the same as in the implicit Euler method.
However, the accuracy of the approximations is better in general, since
trapezoids yield better approximations than rectangles in the quadrature.
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(d) midpoint rule:

The midpoint rule applies a specific rectangle. It follows

y1 = y0 + hf(x0 +
1
2h, y(x0 +

1
2h)). (3.4)

This scheme is not feasible yet, since both y1 and y(x0 +
1
2h) are unknown.

We require an additional equation. For example, an approximation of the
intermediate value y(x0+

1
2h) can be computed by the explicit Euler method.

The resulting technique reads{
y1/2 = y0 +

h
2f(x0, y0)

y1 = y0 + hf(x0 +
1
2h, y1/2).

or, equivalently,

y1 = y0 + hf(x0 +
h
2 , y0 +

h
2f(x0, y0)). (3.5)

The method is explicit, since we can compute successively y1/2 and y1 with-
out solving nonlinear systems. Just two function evaluations of f are re-
quired. This scheme is called the modified Euler method or the method
of Collatz. Although the method applies the Euler method first, the final
approximation y1 is significantly more accurate than in the Euler method
in general.

The accuracy of the above methods follows from latter discussions.

Explicit Euler method (revisited)

We consider the explicit Euler method more detailed. This scheme can be
motivated by two other approaches. First, replacing the derivative in the
ODE y′ = f(x, y) by the common difference quotient (of first order) yields

y(x0 + h)− y(x0)

h
.
= f(x0, y(x0)) ⇒ y1 = y0 + hf(x0, y0).

Second, we consider the tangent of y(x) corresponding to the point (x0, y0)
as approximation of the solution. The tangent is

t(x) = y(x0) + (x− x0)y
′(x0) = y(x0) + (x− x0)f(x0, y(x0)).
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It follows
y1 := t(x0 + h) = y0 + hf(x0, y0),

i.e., the explicit Euler method.

For example, we solve the initial value problem y′ = 1
2y , y(

1
4) =

1
2 , x ∈ [14 , 2].

The solution is just y(x) =
√
x. Figure 8 illustrates the numerical solutions

following form the Euler method. We recognise that the accuracy becomes
better the more steps N are applied.

3.3 Consistency and convergence

We consider a general explicit one-step method of the form (3.1) with the
increment function Φ.

Different notations are used to analyse the accuracy of the approximations
yi+1 in comparison to the exact solution y(xi). On a local scale, we arrange
the following definition.

Definition 1 (local discretisation error) Let y(x) be the exact solution
of the ODE-IVP y′ = f(x, y), y(x0) = y0 and y1 = y0+ hΦ(x0, y0, h) denote
the numerical approximation of one step with h > 0. The local discretisation
error is then defined as

τ(h) :=
y(x0 + h)− y1

h
. (3.6)

The definition (3.6) of the local error can be interpreted in three different
ways:

• the difference between the exact solution and the numerical approxima-
tion (discretisation error after one step starting from the exact solution)
scaled by the step size h.
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N = 10
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N = 50
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Figure 8: Solution of y′ = 1
2y
, y(1

4
) = 1

2
(solid line) and numerical approximation (points)

resulting from the explicit Euler method using N steps.
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Figure 9: Secants of exact solution and numerical approximation.

• the difference in the gradients of the respective secants

τ(h) =
y(x0 + h)− y0

h︸ ︷︷ ︸
exact solution

− y1 − y0
h︸ ︷︷ ︸

approximation

.

The secants are illustrated in Fig. 9. If τ(h) → 0 holds, then both
secants become the tangent t(x) = y(x0) + (x− x0)y

′(x0) in the limit.

• the defect

τ(h) =
y(x0 + h)− y0

h
− Φ(x0, y0, h), (3.7)

which results from inserting the exact solution into the formula of the
approximation.

Example 1: Local discretisation error of the explicit Euler method

Taylor expansion yields assuming y ∈ C2

y(x0 + h) = y(x0) + hy′(x0) +
1
2h

2y′′(x0 + ϑ(h)h)

= y0 + hf(x0, y0) +
1
2h

2y′′(x0 + ϑ(h)h)

with 0 < ϑ(h) < 1.
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The local discretisation error becomes

τ(h) = 1
h(y(x0 + h)− y1)

= 1
h(y(x0 + h)− y0 − hf(x0, y0))

= 1
2hy

′′(x0 + ϑ(h)h).

It follows τ(h) = O(h).

Example 2: Local discretisation error of the implicit Euler method

For simplicity, we assume a bounded right-hand side, i.e., ∥f∥ ≤ M . On
the one hand, the implicit Euler method implies

y1 = y0 + hf(x0 + h, y1) = y0 + hf(x0 + h, y0 + hf(x0 + h, y1)).

Multidimensional Taylor expansion yields

y1 = y0 + h
[
f(x0, y0) +

∂f
∂x(x0, y0)h+ ∂f

∂y (x0, y0)hf(x0 + h, y1) +O(h2)
]

= y0 + hf(x0, y0) +O(h2).

On the other hand, the Taylor expansion of the exact solution from above
can be used. It follows

τ(h) = 1
h(y(x0 + h)− y1)

= 1
h(y0 + hf(x0, y0) +O(h2)− (y0 + hf(x0, y0) +O(h2))) = O(h).

Again we obtain τ(h) = O(h) like in the explicit Euler method.

Based on the property of the local discretisation error, we define the con-
sistency.

Definition 2 (consistency) A method (or its increment function Φ) is
called consistent, if the local discretisation error tends to zero uniformly in
x, y for h→ 0:

∥τ(h)∥ ≤ σ(h) with lim
h→0

σ(h) = 0.

The method is consistent of (at least) order p, if

∥τ(h)∥ = O(hp).
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Consistency of one-step methods can be easily characterised by the following
property.

Lemma 2 Let the right-hand side f of the ODEs y′ = f(x, y) be continuous
in x and satisfy the Lipschitz-condition (2.3) with respect to y. Then it
follows the equivalence

Φ is consistent ⇔ lim
h→0

Φ(x, y, h) = f(x, y).

Proof:

Let z be the solution of the ODE-IVP z′(x) = f(x, z(x)), z(ξ) = η. Due to
the definition of τ and the mean value theorem of differentiation

∥τ(ξ, η, h)∥ = ∥z′(ξ + θh)− Φ(ξ, η, h)∥

for some θ ∈ (0, 1). Since f and z′ are continuous in x, both functions are
uniformly continuous in an interval [a, b]. It follows

lim
h→0

z′(ξ + θh) = z′(ξ) = f(ξ, η)

uniformly and thus

lim
h→0

∥τ(ξ, η, h)∥ = ∥f(ξ, η)− lim
h→0

Φ(ξ, η, h)∥.

This relation shows the statement. □

The order of consistency describes the quality of the numerical approxima-
tion after a single step. However, we are interested in the quality of the
approximation after N steps, where the final point xend is reached. This
motivates the following definition.

Definition 3 (global discretisation error and convergence)
The global discretisation error of a method using a grid x0 < x1 < · · · < xN
is defined by the difference

eN = y(xN)− yN . (3.8)
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For N → ∞, we assume |h| → 0 with |h| := max
i=0,...,N−1

|xi+1−xi|. The method

is called convergent, if for fixed x = xN it holds

lim
N→∞

eN = 0.

The method is convergent of (at least) order p, if it holds

eN = O(|h|p).

Concerning consistency and convergence, we prove the following theorem.

Theorem 5 (convergence of one-step methods) Let f be continuous
and satisfy the Lipschitz-condition (2.3). Consider a one-step scheme with
increment function Φ, which is consistent of order p, i.e.,

∥τ(h)∥ = O(hp).

Then the global discretisation error is bounded by

∥eN∥ ≤ c · |h|p · exp(L|xN − x0|)− 1

L

with a constant c > 0 and |h| = max{h0, h1, . . . , hN−1} for hi := xi+1 − xi.

Proof:

The one-step scheme generates the sequence y1, . . . , yN . We define auxilary
ODE-IVPs by

u′i(x) = f(x, ui(x)), u(xi) = yi for i = 0, 1, . . . , N − 1.

The auxilary solutions are sketched in Figure 10. The global error can be
written as

eN := y(xN)− yN = u0(xN)− yN

= uN−1(xN)− yN +
N−2∑
i=0

ui(xN)− ui+1(xN).
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Figure 10: Lady Windermere’s Fan.

We obtain the estimate

∥eN∥ ≤ ∥uN−1(xN)− yN∥+
N−2∑
i=0

∥ui(xN)− ui+1(xN)∥.

Since the solutions ui satisfy the same system of ODEs for different initial
values, we can apply the relation (2.10). It follows

∥eN∥ ≤ ∥uN−1(xN)− yN∥+
N−2∑
i=0

∥ui(xi+1)− ui+1(xi+1)∥eL|xN−xi+1|

=
N−1∑
i=0

∥ui(xi+1)− yi+1∥eL|xN−xi+1|.

The norms on the right-hand side correspond to the local errors after one
step. Since we assume a consistent method, it holds

∥ui(xi+1)− yi+1∥ ≤ c · hp+1
i ≤ c · |h|p · hi

uniformly with a constant c > 0 and hi := xi+1 − xi. Thus we obtain

∥eN∥ ≤ c · |h|p
N−1∑
i=0

hie
L|xN−xi+1| ≤ c · |h|p

∫ xN

x0

eL|xN−t| dt

= c · |h|p · e
L|xN−x0| − 1

L
,

which completes the proof. □
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This theorem demonstrates that consistency is sufficient for convergence.
Moreover, the order of consistency coincides with the order of convergence.
The consistency can be determined by analysing the increment function Φ
of the one-step method. Vice versa, convergent methods exist, which are not
consistent. Hence consistency is not necessary for convergence. However,
inconsistent methods are not used in practice.

Comparison to numerical quadrature:

Assume that we want to compute the integral

I(g) :=

∫ b

a

g(x) dx

of a function g ∈ C2[a, b] approximately by trapezoidal rule. Let

M := max
a≤x≤b

|g′′(x)|.

We apply a grid xi = a + ih with step size h = b−a
N

. Let T
xi+1
xi (g) be the area of one

trapezoid constructed in the interval [xi, xi+1]. It holds∣∣∣∣∫ xi+h

xi

g(x) dx− T xi+1
xi

(g)

∣∣∣∣ = 1
12
h3|g′′(ξ)| ≤ 1

12
h3M =: R(h).

The value R(h) = O(h3) or R(h)/h = O(h2) can be seen as a local error of the trapezoidal
rule. For the global error EN , we obtain

EN :=

∣∣∣∣∣
∫ b

a

g(x) dx−
N∑
i=1

T xi
xi−1

(g)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

∫ xi

xi−1

g(x) dx− T xi
xi−1

(g)

∣∣∣∣∣
≤

N∑
i=1

∣∣∣∣∫ xi

xi−1

g(x) dx− T xi
xi−1

(g)

∣∣∣∣ ≤
N∑
i=1

1

12
h3M = N

1

12
h3M =

b− a

12
h2M.

Thus it holds EN = O(h2). Remark that N = b−a
h
, i.e., EN can be written in dependence

on the step size h. We recognise that the order of the global error EN = O(h2) coincides
with the order of the local error R(h)/h = O(h2) (provided that we define the local error
as R(h)/h — and not as R(h)).
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3.4 Taylor methods for ODEs

The analysis of the order of consistency indicates an approach for numeri-
cal techniques based on Taylor expansions. For simplicity, we consider an
autonomous system of ODEs, i.e.,

y′(x) = f(y(x)), y(x0) = y0.

An arbitrary intial value problem of ODEs y′ = f(x, y) can be transformed
to an equivalent autonomous system via

Y ′(t) = F (Y (t)) with Y (t) :=

(
y(t)
x(t)

)
, F (Y ) :=

(
f(x, y)

1

)
with initial conditions x(t0) = x0, y(t0) = y0.

Moreover, we discuss a scalar autonomous ODE y(x) = f(y(x)) now. Given
a solution y ∈ Cp+1, Taylor expansion yields

y(x0 + h) = y(x0) + hy′(x0) +
h2

2! y
′′(x0) + · · ·+ hp

p! y
(p)(x0)

+ hp+1

(p+1)!y
(p+1)(x0 + ϑ(h)h)

(3.9)

with 0 < ϑ(h) < 1. For a sufficiently smooth right-hand side f , we can
replace the derivatives of the unknown solution. It holds

y′ = f(y)

y′′ = f ′(y)y′ = f ′(y)f(y)

y′′′ = (f ′′(y)y′)f(y) + f ′(y)(f ′(y)y′) = f ′′(y)f(y)2 + f ′(y)2f(y)

...

and thus
y′(x0) = f(y0)

y′′(x0) = f ′(y0)f(y0)

y′′′(x0) = f ′′(y0)f(y0)
2 + f ′(y0)

2f(y0)

... .
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Since the initial value y(x0) = y0 is given, we define one-step methods
y1 = y0 + hΦ(y0, h) via

Φ1(y, h) = f(y)

Φ2(y, h) = f(y) + h
2f

′(y)f(y)

Φ3(y, h) = f(y) + h
2f

′(y)f(y) + h2

6

[
f ′′(y)f(y)2 + f ′(y)2f(y)

]
...

based on the Taylor expansion (3.9). The method specified by Φ1 is just the
explicit Euler method. Due to this construction, the pth method exhibits
the local discretisation error

τp(h) =
y(x0 + h)− y(x0)

h
− Φp(y0, h) =

hp

(p+ 1)!
y(p+1)(x0 + ϑ(h)h)

i.e., τp(h) = O(hp). It follows that the method is consistent of order p.

However, the number of required derivatives increases rapidly in case of
systems of ODEs:

f : n components
∂f
∂y : n2 components
∂2f
∂y2 : n3 components

...
∂kf
∂yk

: nk+1 components.

Hence the computational effort becomes large for higher orders. Moreover,
the computation of derivatives of higher order via numerical differentiation
becomes more and more affected by roundoff errors.

In conclusion, Taylor methods of order p > 1 are not used in practice.
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3.5 Runge-Kutta methods

The most important class of one-step schemes are Runge-Kutta methods.
The idea is to replace the integral in (2.2) by a quadrature rule with nodes
c1, . . . , cs ∈ [0, 1] and (outer) weights b1, . . . , bs ∈ R. Without loss of gener-
ality, we assume c1 ≤ c2 ≤ · · · ≤ cs. It follows a finite sum

y1 = y0 + h

s∑
i=1

bif(x0 + cih, y(x0 + cih)).

The problem is that the intermediate values y(x0 + cih) are unknown a
priori. We achieve according approximations by an integral relation again

y(x0 + cih) = y0 + h

∫ ci

0

f(x0 + sh, y(x0 + sh)) ds.

The involved integrals are substituted by quadrature formulas. To avoid the
generation of new unknowns, the same nodes c1, . . . , cs as before are used.
Just new (inner) weights aij are introduced. We obtain the approximations

zi = y0 + h

s∑
j=1

aijf(x0 + cjh, zj) (3.10)

for i = 1, . . . , s. The resulting final approximation becomes

y1 = y0 + h
s∑

i=1

bif(x0 + cih, zi).

The general relations (3.10) represent a nonlinear system for the unknowns
z1, . . . , zs. If these intermediate values have been determined, then we can
compute y1 directly via s evaluations of the function f .

Considering (3.10), a natural requirement is that a constant function f ≡ 1
(y(x0 + cih) = y0 + cih) is resolved exactly. We obtain the conditions

ci =
s∑

j=1

aij for each i = 1, . . . , s. (3.11)

36



This condition means that the sum of the weights is equal to the (relative)
length of the corresponding subinterval.

A Runge-Kutta scheme is uniquely determined by its coefficients. The co-
efficients can be written in a so-called Butcher-tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs

resp.
c A

b⊤

with c ∈ Rs, b ∈ Rs, A ∈ Rs×s.

Examples: Schemes from Sect. 3.2

(a): expl. Euler method, (b): impl. Euler method, (c): trapezoidal rule,
(d): method of Collatz (midpoint rule):

(a)
0 0

1
(b)

1 1

1
(c)

0 0 0
1 1

2
1
2

1
2

1
2

(d)

0 0 0
1
2

1
2 0

0 1

Example: Gauss-Runge-Kutta methods

For the nodes ci and the weights bi, we apply a Gaussian quadrature. The
Gaussian quadrature exhibits the order 2s, i.e., it holds

s∑
i=1

bip(ci) =

∫ 1

0

p(x) dx for all p ∈ P2s−1

(Pm: polynomials up to degree m). The weights aij are determined such
that for each i = 1, . . . , s it holds

s∑
j=1

aijp(cj) =

∫ ci

0

p(x) dx for all p ∈ Ps−1.
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In the simple case s = 1, it follows directly c1 =
1
2 , b1 = 1 and a11 =

1
2 . The

resulting Runge-Kutta method is

z1 = y0 +
h
2f(x0 +

h
2 , z1),

y1 = y0 + hf(x0 +
h
2 , z1).

(3.12)

This approach corresponds to the midpoint rule (3.4), where the approxi-
mation z1

.
= y(x0 +

1
2h) is determined by the implicit Euler method.

The Butcher tableau of the case s = 2 reads:

3−
√
3

6
1
4

3−2
√
3

12
3+

√
3

6
3+2

√
3

12
1
4

1
2

1
2

If the matrix A = (aij) is full, then the Runge-Kutta method is implicit.
A nonlinear system (3.10) of s · n algebraic equations has to be solved. In
contrast, we want to achieve an explicit method now. The corresponding
condition reads aij = 0 for i ≤ j. Thus A becomes a strictly lower triangular
matrix. The Butcher-tableau exhibits the form:

0 0 0 · · · · · · 0

c2 a21 0 . . . ...
...

... . . . . . . . . . ...
...

... . . . 0 0
cs as1 · · · · · · as,s−1 0

b1 b2 · · · bs−1 bs

In particular, it follows c1 = 0 due to (3.11) and thus z1 = y0. Now the
computation of the intermediate values reads

zi = y0 + h
i−1∑
j=1

aijf(x0 + cjh, zj).

The computational effort for an explicit Runge-Kutta method just consists
in the s evaluations of the right-hand side f . Explicit methods correspond
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to successive extrapolations using the intermediate values. Implicit methods
can be seen as an interpolation based on the intermediate values.

Examples: Some well-known explicit Runge-Kutta methods

Method of Heun (left), Kutta-Simpson rule (middle) and classical Runge-
Kutta method (right):

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

0
1
2

1
2

1 −1 2
1
6

4
6

1
6

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

An equivalent notation of Runge-Kutta schemes results from the definition
of the increments ki via

ki = f(x0 + cih, zi) = f

(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
(3.13)

for i = 1, . . . , s. Now the Runge-Kutta method reads

ki = f

(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
, i = 1, . . . , s ,

y1 = y0 + h
s∑

i=1

biki.

(3.14)

Thereby, the increments ki are unknown a priori.

Order conditions

A Runge-Kutta method is determined by its coefficients ci, bi, aij. We derive
conditions on these coefficients such that the one-step method becomes
consistent of some order p. We consider autonomous scalar ODEs y′ = f(y).
It follows

y′′ = f ′y′ = f ′f,

y′′′ = f ′′y′f + f ′f ′y′ = f ′′f 2 + (f ′)2f.
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Taylor expansion of the exact solution yields

y(x0 + h) = y(x0) + hy′(x0) +
h2

2 y
′′(x0) +

h3

6 y
′′′(x0) +O(h4)

= y0 + hf(y0) +
h2

2 f
′(y0)f(y0)

+ h3

6

[
f ′′(y0)f(y0)

2 + f ′(y0)
2f(y0)

]
+O(h4).

In the following, we use the abbreviations f = f(y0), f
′ = f ′(y0), etc.

We assume that the Runge-Kutta method fulfills the fundamental condi-
tion (3.11). A Taylor expansion of the function f in the increments (3.13)
implies for i = 1, . . . , s

ki = f + f ′h

(
s∑

j=1

aijkj

)
+ 1

2f
′′h2

(
s∑

j=1

aijkj

)2

+O(h3)

= f + f ′h

(
s∑

j=1

aij

(
f + f ′h

(
s∑

l=1

ajlkl

)
+O(h2)

))

+ 1
2f

′′h2

(
s∑

j=1

aij (f +O(h))

)2

+O(h3)

= f + f ′h

(
s∑

j=1

aij

(
f + f ′h

(
s∑

l=1

ajl (f +O(h))

)
+O(h2)

))

+ 1
2f

′′h2 (fci +O(h))2 +O(h3)

= f + f ′h

(
s∑

j=1

aij
(
f + f ′fhcj +O(h2)

))
+ 1

2f
′′f 2h2c2i +O(h3)

= f + hf ′fci + h2(f ′)2f

(
s∑

j=1

aijcj

)
+ 1

2h
2f ′′f 2c2i +O(h3).
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The approximation obtained by the Runge-Kutta method becomes

y1 = y0 + h
s∑

i=1

biki

= y0 + hf

(
s∑

i=1

bi

)
+ h2f ′f

(
s∑

i=1

bici

)
+ h3(f ′)2f

(
s∑

i,j=1

biaijcj

)

+ 1
2h

3f ′′f 2

(
s∑

i=1

bic
2
i

)
+O(h4).

A comparison to the Taylor expansion of the exact solution shows the con-
ditions for consistency up to order p = 3. We also cite the conditions for
order p = 4:

p = 1 :
s∑

i=1

bi = 1

p = 2 :
s∑

i=1

bici = 1
2

p = 3 :
s∑

i=1

bic
2
i = 1

3

s∑
i,j=1

biaijcj = 1
6

p = 4 :
s∑

i=1

bic
3
i = 1

4

s∑
i,j=1

biaijcicj = 1
8

s∑
i,j=1

biaijc
2
j = 1

12

s∑
i,j,l=1

biaijajlcl = 1
24

The conditions for consistency can be derived up to an arbitrary order p. In
case of explicit Runge-Kutta methods, the sums just involve the non-zero
coefficients. For a desired order p of consistency, we like to apply a Runge-
Kutta method with relatively low number of stages s. In case of implicit
schemes, a method with s stages exhibits the maximum order p = 2s in
case of Gauss-Runge-Kutta methods. In case of explicit schemes, Table 1
gives corresponding informations.
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stage number s 1 2 3 4 5 6 7 8 9 10 11 · · · 17
maximum order p 1 2 3 4 4 5 6 6 7 7 8 · · · 10

order p 1 2 3 4 5 6 7 8
minimum stage number s 1 2 3 4 6 7 9 11
number of order conditions 1 2 4 8 17 37 85 200

Table 1: Order and number of stages in explicit Runge-Kutta methods.

3.6 Dense output

The numerical method yields a sequence of approximations y0, y1, . . . , yN
corresponding to a grid x0 < x1 < · · · < xN . The number N of the steps
should be relatively small, since the computational effort is proportional
to N . The appropriate choice of the step sizes hi = xi+1 − xi will be
discussed in the next subsection.

Let the approximations y0, y1, . . . , yN be already determined. Often we re-
quire more solution values on a finer grid (for example to visualise/plot the
solution). We want to calculate these values with a low additional effort.
An appropriate approach is the dense output, i.e., a continuous approxi-
mation ỹ(x) is contructed using the (maybe coarse) data (xi, yi) from the
numerical integration method. Without loss of generality, we consider a
scalar ODE in the following.

First idea: Interpolation

We can arrange a cubic spline interpolant ỹ ∈ C2 based on the data (xi, yi).
However, the complete data has to be computed first in this case. Alter-
natively, we perform a cubic Hermite interpolation to obtain ỹ ∈ C1. For
x ∈ [xi, xi+1], the interpolant corresponding to the exact solution is

u(xi + θhi) = y(xi)p1(θ) + y(xi+1)p2(θ) + hiy
′(xi)p3(θ) + hiy

′(xi+1)p4(θ).

The interpolant corresponding to the available data is

ỹ(xi + θhi) = yip1(θ) + yi+1p2(θ) + hif(xi, yi)p3(θ) + hif(xi+1, yi+1)p4(θ),
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where the ODE y′ = f(x, y) has been applied. The basis polynomials read

p1(θ) = 1− 3θ2 + 2θ3, p2(θ) = 3θ2 − 2θ3,

p3(θ) = θ − 2θ2 + θ3, p4(θ) = −θ2 + θ3,
for 0 ≤ θ ≤ 1.

The evaluation of the Hermite interpolant ỹ can be done online during the
integration. Moreover, the function evaluations f(xi, yi), f(xi+1, yi+1) are
available from the (explicit) Runge-Kutta method.

We determine the accuracy of the approximation. On the one hand, it holds

|y(x)− u(x)| ≤ 1

384

(
max

s∈[xi,xi+1]
|y(4)(s)|

)
h4i = O(h4i )

for x ∈ [xi, xi+1]. On the other hand, we obtain using the Lipschitz-
condition |f(xi, yi)− f(xi, y(xi))| ≤ L · |yi − y(xi)|

|u(xi + θhi)− ỹ(xi + θhi)| ≤ |y(xi)− yi| · |p1(θ)|
+ |y(xi+1)− yi+1| · |p2(θ)|
+ hi · L · |y(xi)− yi| · |p3(θ)|
+ hi · L · |y(xi+1)− yi+1| · |p4(θ)|.

The definition
p̂l := max

θ∈[0,1]
|pl(θ)| for l = 1, 2, 3, 4

yields

|u(x)− ỹ(x)| ≤ |y(xi)− yi| · (p̂1 + hiLp̂3) + |y(xi+1)− yi+1| · (p̂2 + hiLp̂4).

for all x ∈ [xi, xi+1]. In case of a Runge-Kutta method with consistency
order p, the convergence of the scheme implies |y(xi) − yi| = O(|h|p) and
thus |u(x)− ỹ(x)| = O(|h|p). It follows

|y(x)− ỹ(x)| = O(|h|4) +O(|h|p).

Hence an order p of consistency implies a dense output, which approximates
the exact solution with order q = min{4, p}.
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Second idea: Continuous Runge-Kutta method

The second strategy of dense output is to use a Runge-Kutta scheme as
a basis for a continuous extension. Thereby, the constant weights bi are
replaced by polynomials bi(θ) in θ ∈ (0, 1). Let the scheme be defined by

ỹ(x0 + θh) = y0 + h
s∑

i=1

bi(θ)ki, 0 < θ < 1,

ki = f

(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
, i = 1, . . . , s.

(3.15)

Furthermore, the Runge-Kutta scheme shall satisfy the node relation (3.11).
We determine the order conditions of the continuous extension for the or-
ders p = 1, 2, 3. (The approximation for y(x0 + θh) has to be consistent of
order p for all θ ∈ (0, 1).) We rewrite the dense output scheme as

ỹ(x0 + θh) = y0 + θh

s∑
i=1

bi(θ)

θ
ki, 0 < θ < 1,

ki = f

(
x0 +

ci
θ
θh, y0 + θh

s∑
j=1

aij
θ
kj

)
, i = 1, . . . , s.

These formulas represent an ordinary Runge-Kutta method with step size θh
and new coefficients

b̃i(θ) :=
bi(θ)

θ
, c̃i(θ) :=

ci
θ
, ãij(θ) :=

aij
θ
.

For each θ, the new coefficients have to satisfy the usual order conditions.
Thus we obtain:

p = 1 :
s∑

i=1

b̃i(θ) = 1 ⇒
s∑

i=1

bi(θ)

θ
= 1 ⇒

s∑
i=1

bi(θ) = θ

p = 2 :
s∑

i=1

b̃i(θ)c̃i(θ) =
1

2
⇒

s∑
i=1

bi(θ)

θ
· ci
θ
=

1

2
⇒

s∑
i=1

bi(θ)ci =
θ2

2

p = 3 :
s∑

i=1

b̃i(θ)c̃i(θ)
2 =

1

3
⇒

s∑
i=1

bi(θ)

θ
· c

2
i

θ2
=

1

3
⇒

s∑
i=1

bi(θ)c
2
i =

θ3

3
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s∑
i,j=1

b̃i(θ)ãij(θ)c̃j(θ) =
1

6
⇒

s∑
i,j=1

bi(θ)

θ
· aij
θ

· cj
θ

=
1

6
⇒

s∑
i,j=1

bi(θ)aijcj =
θ3

6

The generalisation to higher orders is obvious. In general, the maximum
order for the dense output scheme will be lower than the maximum order
for the pointwise (original) method.

Example:

We use the classical Runge-Kutta method with four stages. The scheme
is consistent of order 4. We determine the polynomials bi(θ) such that the
dense output scheme features the order 3.

The order conditions imply the equations:

b1(θ) + b2(θ) + b3(θ) + b4(θ) = θ

1
2b2(θ) +

1
2b3(θ) + b4(θ) = θ2

2

1
4b2(θ) +

1
4b3(θ) + b4(θ) = θ3

3

1
4b3(θ) +

1
2b4(θ) = θ3

6

Solving this linear system yields

b1(θ) = θ − 3θ2

2
+

2θ3

3
, b2(θ) = b3(θ) = θ2 − 2θ3

3
, b4(θ) = −θ

2

2
+

2θ3

3
.

Now the dense output scheme (3.15) can be applied, since all involved coeffi-
cients are determined. It holds bi(0) = 0 and bi(1) = bi for each i. Hence the
approximating function ỹ is globally continuous and just piecewise smooth.
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3.7 Step-Size Control

In a numerical integration, the approximations yk
.
= y(xk) are computed

successively by some numerical method. We would like to obtain an auto-
matic selection of the step sizes hk := xk+1−xk such that the corresponding
error in the approximations remains sufficiently small.

Let y = (y1, . . . , yn)
⊤ be the components of the solution. We assume that

a given numerical scheme exhibits a consistency order of p, i.e., the corre-
sponding approximation yh

.
= y(x0 + h) satisfies

yhi − yi(x0 + h) = O(hp+1) = Cih
p+1 +O(hp+2) (3.16)

with constants Ci ̸= 0 for each component. A similar numerical technique
is used to compute an approximation ŷh of a higher order

ŷhi − yi(x0 + h) = O(hp+2). (3.17)

In Runge-Kutta methods, embedded schemes are usually employed. Sev-
eral possibilities exist in case of multi-step methods. Richardson extrapola-
tion can be applied with respect to both one-step and multi-step methods.
Thereby, an approximation is computed using step size h as usual and an-
other approximation is calculated with two steps of size h

2 , for example.
Both values yield an approximation of a higher order in a corresponding
extrapolation.

We want to estimate the error yh − y(x0 + h) of the lower order method.
Combining (3.16) and (3.17) yields

yhi − yi(x0 + h) = yhi − ŷhi − (yi(x0 + h)− ŷhi ) = yhi − ŷhi +O(hp+2). (3.18)

Thus ŷh − yh represents an estimator for the local error of order p + 1.
Applying (3.16) and (3.18), it follows

yhi − ŷhi = Cih
p+1 +O(hp+2). (3.19)

We assume that we have already performed an integration step of the
size hused. Now we want to estimate an appropriate step size hopt to re-
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peat the integration. The properties (3.16) and (3.19) imply approximately

yhused

i − ŷhused

i
.
= Cih

p+1
used,

y
hopt

i − yi(x0 + hopt)
.
= Cih

p+1
opt .

Eliminating the constant Ci yields

|yhopt

i − yi(x0 + hopt)|
|yhused

i − ŷhused

i |
=

(
hopt
hused

)p+1

. (3.20)

The error estimate of the done step is given by

ηi := |yhused

i − ŷhused

i | (3.21)

for i = 1, . . . , n. The error corresponding to the new step size shall satisfy

|yhopt

i − yi(x0 + hopt)| = TOL (3.22)

for some given absolute tolerance TOL > 0 in all components. We do
not want that the error is smaller than TOL, since a smaller error implies
smaller step sizes and thus more computational effort due to more steps.
Inserting the last two relations in equation (3.20) implies

hopt,i = hused · p+1

√
TOL

ηi
,

where each component exhibits a different step size. The size for the new
step is chosen as

hnew = δ · min
i=1,...,n

hopt,i

including some safety factor δ = 0.9, for example. To avoid oscillating step
sizes, the restriction

σ hused ≤ hnew ≤ θ hused

is imposed with 0 < σ < 1 < θ (e.g. σ = 1
5 , θ = 5).

If hnew < hused holds, then we have not been sufficiently accurate in the
done integration step with respect to our demand (3.22). Consequently,
the step is repeated using hnew instead of hused. If hnew ≥ hused is satisfied,
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then the integration step is accepted and the next step is done using hnew
as suggested step size.

Often the tolerance is defined relatively with respect to the magnitude of the
solution. Given some relative tolerance RTOL > 0 and absolute tolerance
ATOL > 0, we arrange

TOL = ATOL + RTOL · |yhused

i |.

The absolute part ATOL is required in case of |yhused

i | ≈ 0. Typical values
are RTOL = 10−3 and ATOL = 10−6, for example.

Using the modulus |·| like above, i.e., some kind of maximum norm, exhibits
a lack of smoothness, which sometimes causes problems in the simulations.
In practice, the scaled norm

ERR =

√√√√1

n

n∑
i=1

(
ŷhused

i − yhused

i

ATOL + RTOL · |yhused

i |

)2

(3.23)

ia applied, which represents a kind of weighted Euclidean norm. Note that
denominators are always positive in (3.23). The condition (3.22) corre-
sponds to ERR = 1 now. The new step size becomes

hnew = δ · hused ·
1

p+1
√
ERR

using some safety factor δ again.

The estimation is done for the error in the method of order p, whereas the
result of the method of order p + 1 is only used in the error estimation.
However, the approximation of order p + 1 is often applied as the output
of the algorithm after each integration step. This is reasonable, since the
method of order p+ 1 is usally more accurate.

The above approach controls the local error in each integration step. How-
ever, we like to select the step sizes such that the global error (3.8) satisfies
a predetermined accuracy. Yet there are no satisfactory strategies to control
the global error. Hence numerical integrators of common software packages
(e.g. MATLAB) just perform a step size selection based on the local error.
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Embedded techniques

It remains to choose the two numerical methods in the estimation of the local
error. In case of Runge-Kutta methods, embedded schemes are applied,
since the additional computational work for the second approximation is
relatively low.

The Butcher tableau of an embedded scheme reads

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs
b̂1 b̂2 · · · b̂s

with two sets of weights bi and b̂i, respectively. The corresponding approx-
imations are

yh = y0 + h(b1k1 + · · ·+ bsks),

ŷh = y0 + h(b̂1k1 + · · ·+ b̂sks).

If the data k1, . . . , ks for computing the approximation yh is available, then
the second approximation ŷh can be calculated with nearly no additional
effort.

In case of explicit Runge-Kutta methods, the class of the Runge-Kutta-
Fehlberg methods represents embedded schemes.

Example: Runge-Kutta-Fehlberg 2(3)

0
1
4

1
4

27
40 −189

800
729
800

1 214
891

1
33

650
891

214
891

1
33

650
891 0

533
2106 0 800

1053 − 1
78
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Chapter 4

Multistep Methods

4

In this chapter, we investigate multistep methods, i.e., several old approxi-
mations are used to construct a new approximation. In contrast to one-step
techniques, consistency alone is not sufficient for the convergence of these
methods.

4.1 Techniques based on numerical quadrature

We introduce an important class of multistep schemes now. The strategy is
based on the integral equation (2.2). A polynomial interpolation is arranged
and the exact integral of the polynomial yields an approximation.

We consider the initial value problem y′ = f(x, y), y(x0) = y0, see (2.1). For
the following discussions, we assume a scalar ODE, since the strategy can be
applied in each component of a system separately. Let the approximations

(xi−k+1, yi−k+1), (xi−k+2, yi−k+2), . . . , (xi−1, yi−1), (xi, yi) (4.1)

be given for some integer k ≥ 1. We want to construct a new approximation
(xi+1, yi+1). Choosing some integer l ≥ 1, the exact solution satisfies the
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integral equation

y(xi+1) = y(xi−l+1) +

∫ xi+1

xi−l+1

y′(s) ds

= y(xi−l+1) +

∫ xi+1

xi−l+1

f(s, y(s)) ds.
(4.2)

Now we approximate the integrand f(x, y(x)). We arrange the polynomial
pk,i ∈ Pk−1, which interpolates the data

(xj, f(xj, yj)) for j = i− k + 1, i− k + 2, . . . , i− 1, i.

Consequently, it holds

pk,i(xj) = f(xj, yj) for j = i− k + 1, i− k + 2, . . . , i− 1, i.

The interpolating polynomial is unique. Using a Lagrange basis

Li,j(x) =
k∏

ν=1,ν ̸=j

x− xi−ν+1

xi−j+1 − xi−ν+1
for j = 1, . . . , k ,

the polynomial becomes with fi := f(xi, yi)

pk,i(x) =
k∑

j=1

fi−j+1Li,j(x).

Due to the assumption pk,i(x) ≈ f(x, y(x)) in the considered domain, the
new approximation becomes due to (4.2)

yi+1 = yi−l+1 +
k∑

j=1

fi−j+1

∫ xi+1

xi−l+1

Li,j(s) ds.

Since the Lagrange polynomials are known, the integral can be evaluated
exactly.

In most cases, it holds l ≤ k, i.e., the interval of the interpolation contains
the interval of the integration (to the left-hand side). Fig. 11 illustrates this
strategy. We have achieved an explicit k-step method.
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x x

f

x

p(x)

x xi−k+1 i−l+1 i i+1

Figure 11: Construction of multistep method by quadrature.

In case of an equidistant grid xi = x0 + ih, the integrals of the Lagrange
polynomials are independent of the index i∫ xi+1

xi−l+1

Li,j(s) ds =

∫ xi+1

xi−l+1

∏
ν ̸=j

s− xi−ν+1

xi−j+1 − xi−ν+1
ds

= h

∫ 1

1−l

∏
ν ̸=j

x0 + (i+ u)h− (x0 + (i− ν + 1)h)

x0 + (i− j + 1)h− (x0 + (i− ν + 1)h)
du

= h

∫ 1

1−l

∏
ν ̸=j

u+ ν − 1

ν − j
du.

It follows a method

yi+1 = yi−l+1 + h
k∑

j=1

βjf(xi−j+1, yi−j+1)

with the constant coefficents

βj :=

∫ 1

1−l

k∏
ν=1,ν ̸=j

u+ ν − 1

ν − j
du for j = 1, . . . , k.

An implicit multistep method results, if we include the unknown new ap-
proximation (xi+1, yi+1) in the interpolation. Let qk,i ∈ Pk be the interpo-
lating polynomial of the data

(xj, f(xj, yj)) for j = i− k + 1, i− k + 2, . . . , i− 1, i, i+ 1.
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It follows

qk,i(xj) = f(xj, yj) for j = i− k + 1, i− k + 2, . . . , i− 1, i, i+ 1.

The corresponding Lagrange polynomials become

L∗
i,j(x) =

k∏
ν=0,ν ̸=j

x− xi−ν+1

xi−j+1 − xi−ν+1
for j = 0, 1, . . . , k

and thus

qk,i(x) =
k∑

j=0

fi−j+1L
∗
i,j(x).

We write qk,i(x; yi+1) to emphasize that the polynomial depends on the new
approximation, which is unknown a priori. We obtain

yi+1 = yi−l+1 +

∫ xi+1

xi−l+1

qk,i(s; yi+1) ds.

This relation represents a nonlinear equation for the unknown yi+1. Hence
this approach yields an implicit method with k steps.

In case of equidistant step sizes, the method reads

yi+1 = yi−l+1 + h
k∑

j=0

β∗
j f(xi−j+1, yi−j+1)

with corresponding coefficients

β∗
j :=

∫ 1

1−l

k∏
ν=0,ν ̸=j

u+ ν − 1

ν − j
du for j = 0, 1, . . . , k.

Equivalently, we can write

yi+1 − hβ∗
0f(xi+1, yi+1) = yi−l+1 + h

k∑
j=1

β∗
j f(xi−j+1, yi−j+1),

where the right-hand side involves known data and the left-hand side con-
tains the unknown new approximation.
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β1 β2 β3 β4
k = 1 1

k = 2 3
2

−1
2

k = 3 23
12

−16
12

5
12

k = 4 55
24

−59
24

37
24

− 9
24

β∗
0 β∗

1 β∗
2 β∗

3 β∗
4

k = 1 1
2

1
2

k = 2 5
12

8
12

− 1
12

k = 3 9
24

19
24

− 5
24

1
24

k = 4 251
720

646
720

−264
720

106
720

− 19
720

Table 2: Coefficients in Adams-Bashforth (left) and Adams-Moulton (right).

Adams methods

A popular family of multistep techniques are the Adams methods, which
result from the choice l = 1 in (4.2). Hence the integration is just done in
the subinterval [xi, xi+1].

The explicit schemes are the Adams-Bashforth methods. These k-step
methods read

yi+1 = yi + h
k∑

j=1

βjf(xi−j+1, yi−j+1) (4.3)

in case of equidistant step sizes. The implicit schemes are the Adams-
Moulton methods. The k-step scheme exhibits the formula

yi+1 = yi + h
k∑

j=0

β∗
j f(xi−j+1, yi−j+1). (4.4)

Table 2 shows the coefficients of these methods in the cases k = 1, 2, 3, 4.
The one-step Adams-Bashforth method coincides with the explicit Euler
scheme, whereas the one-step Adams-Moulton method yields the trape-
zoidal rule.

Nyström methods and Milne methods

We obtain further important multistep schemes by the choice l = 2 in (4.2).
The corresponding explicit techniques are called Nyström methods. For
example, the selection k = 1 (now k < l) yields the explicit midpoint rule

yi+1 = yi−1 + 2hf(xi, yi), (4.5)
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which is a two-step method. Alternatively, the implicit techniques are called
Milne methods. For equidistant step sizes, the case k = 1 results in the
explicit midpoint rule again, i.e., the term fi+1 cancels out. The choice k = 2
yields the Milne-Simpson rule

yi+1 = yi−1 + h1
3 (f(xi−1, yi−1) + 4f(xi, yi) + f(xi+1, yi+1)) ,

which represents an implicit scheme. This method agrees to the Simpson
rule applied in numerical quadrature.

Remark that choices l ≥ 3 in (4.2) are not important in practice. Moreover,
the number of steps (max{k, l}) is often not larger than 5 in corresponding
software packages.

4.2 Linear difference schemes

We consider a scalar ODE and equidistant step sizes for simplicity. The
multistep methods from the previous section represent specific cases of linear
multistep schemes

k∑
l=0

αlyi+l = h
k∑

l=0

βlf(xi+l, yi+l). (4.6)

Remark that the ordering of the coefficients is opposite to Sect. 4.1, since
yi+k represents the new approximation now. It holds αk ̸= 0, whereas
α0 = 0 is feasible, see the Adams methods with k > 1, for example. A
general (nonlinear) multistep scheme reads

n∑
l=0

al yi+l = hF (xi, yi−m, . . . , yi+n) (4.7)

with a function F depending also on the right-hand side f of the system
of ODEs (2.1). We assume a0, an ̸= 0 in (4.7). The integers n,m are
determined by the method (n is not the dimension of the ODE system
here). To analyse the stability of a multistep method, it is sufficient to
investigate the linear difference scheme in the left-hand side of (4.7).
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We apply complex numbers in the following. A linear difference equation
of order n reads

L(uj) :≡
n∑

s=0

as uj+s = cj+n for j = 0, 1, 2, . . . , (4.8)

where the coefficients a0, . . . , an ∈ C and ci ∈ C for i > n− 1 are arbitrary
except for the assumption a0, an ̸= 0. The mapping L is called a difference
operator. We want to determine sequences (ui)i∈N0

⊂ C, which satisfy the
difference equation (4.8). An initial condition

ui = vi for i = 0, . . . , n− 1 (4.9)

with predetermined values v0, v1, . . . , vn−1 ∈ C is required. The solution of
the initial value problem (4.8),(4.9) results to

uj+n =
1

an

(
−

n−1∑
s=0

as uj+s + cj+n

)
for j = 0, 1, 2, . . . (4.10)

and can be computed successively.

The homogeneous difference equation corresponding to (4.8) is

L(uj) = 0 for j = 0, 1, 2, . . . . (4.11)

The solution of an initial value problem is given by (4.10) with ci = 0 for

all i. Since the operator L is linear: L(αu
(1)
j + βu

(2)
j ) = αL(u

(1)
j ) + βL(u

(2)
j ),

the solutions form a linear space.

Definition 4 The sequences (u
(ν)
i )i∈N0

⊂ C for ν = 1, . . . , r are called lin-
ear independent, if the relation

r∑
ν=1

αν u
(ν)
i = 0 for all i ∈ N0

implies αν = 0 for all ν = 1, . . . , r. A set of n linear independent solutions
of the homogeneous difference equation (4.11) is a fundamental system.
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Theorem 6 Let (u
(ν)
i )i∈N0

for ν = 1, . . . , n be a fundamental system of
(4.11). Then each solution (vi)i∈N0

of (4.11) exhibits a unique representa-
tion

vi =
n∑

ν=1

ανu
(ν)
i

with coefficients α1, . . . , αn ∈ C.

Proof:

Since the elements of the fundamental system are linearly independent, it
follows that the n vectors (u

(ν)
0 , . . . , u

(ν)
n−1)

⊤ ∈ Cn for ν = 1, . . . , n are linearly
independent. Thus the matrix

A :=

 u
(1)
0 · · · u

(n)
0

...
...

u
(1)
n−1 · · · u

(n)
n−1

 ∈ Cn×n (4.12)

is regular. Let v = (v0, . . . , vn−1)
⊤ ∈ Cn. The linear system Ax = v with

x = (α1, . . . , αn)
⊤ exhibits a unique solution, which represents the desired

coefficients. Remark that initial value problems of (4.11) exhibit unique
solutions. □

Now we show the existence of a fundamental system for the homogeneous
difference equation (4.11) by construction.

Definition 5 The polynomial

pn(x) :=
n∑

s=0

asx
s = a0 + a1x+ · · ·+ an−1x

n−1 + anx
n (4.13)

is called the characteristic polynomial of the difference operator L in (4.8).

Let x1, . . . , xm ∈ C be the pairwise different roots (zeros) of the character-
istic polynomial with the multiplicities r1, . . . , rm:

pn(x) = an(x− x1)
r1(x− x2)

r2 · · · (x− xm)
rm.
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Thus it holds r1 + · · ·+ rm = n. In particular, it follows

dk

dxk
(pn(x))

∣∣∣∣
x=xµ

= 0 for k = 0, . . . , rµ − 1 (4.14)

and each µ = 1, . . . ,m. The assumption a0 ̸= 0 implies xµ ̸= 0 for each
root.

Theorem 7 A fundamental system of (4.11) is given by

(u
(1,µ)
i ) := (xµ

i)

(u
(2,µ)
i ) := (ixµ

i)

(u
(3,µ)
i ) := (i(i− 1)xµ

i)

...

(u
(rµ,µ)
i ) := (i(i− 1) · · · (i− rµ + 2)xµ

i)

for µ = 1, . . . ,m.

Proof:

We insert a sequence of the set into the difference operator L

L(u
(k+1,µ)
i ) =

n∑
s=0

asu
(k+1,µ)
i+s

=
n∑

s=0

as(i+ s)(i+ s− 1) · · · (i+ s− k + 1)xi+s
µ

= xkµ ·
n∑

s=0

as(i+ s)(i+ s− 1) · · · (i+ s− k + 1)xi+s−k
µ

= xkµ · dk

dxk (x
ipn(x))

∣∣∣
x=xµ

for k = 0, 1, . . . , rµ − 1. The latter equality follows from

dk

dxk

(
xi ·

n∑
s=0

asx
s

)
=

dk

dxk

(
n∑

s=0

asx
i+s

)
=

n∑
s=0

as
dk

dxkx
i+s

=
n∑

s=0

as(s+ i)(s+ i− 1) · · · (s+ i− k + 1)xi+s−k.
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The Leipniz rule yields

dk

dxk

(
xipn(x)

)
=

k∑
l=0

(
k
l

)
·
(

dk−l

dxk−lx
i
)
·
(

dl

dxlpn(x)
)
.

The property (4.14) yields L(u
(k+1,µ)
i ) = 0 for all i.

It remains to show that the n sequences are linearly independent. We ob-
serve the square matrix formed by the values u

(k+1,µ)
i for i = 0, 1, . . . , n− 1.

The structure agrees to a Van-der-Monde matrix (cf. polynomial interpola-
tion) and thus the matrix is regular. It follows that the system of sequences
is linearly independent. □

We have shown the existence of a fundamental system (u
(ν)
i ) for ν = 1, . . . , n.

We also achieve a standardised fundamental system (w
(ν)
i ) for ν = 1, . . . , n

characterised by the initial conditions

w
(ν)
i−1 =

{
1 if i = ν,
0 if i ̸= ν,

for i, ν = 1, . . . , n.

We obtain the standardised system via

w
(ν)
i =

n∑
j=1

α
(ν)
j u

(j)
i ,

where the coefficients x(ν) = (α
(ν)
1 , . . . , α

(ν)
n )⊤ follow from the linear system

Ax(ν) = eν with the transformation matrix (4.12) and the νth unit vector
eν = (0, . . . , 0, 1, 0, . . . , 0)⊤.

Lemma 3 Let (u
(ν)
i ) for ν = 0, 1, . . . , n−1 be the standardised fundamental

system of the homogeneous difference equation (4.11). Then the solution
(ui) of the initial value problem (4.8), (4.9) of the inhomogeneous difference
equation is given by

ui =
n−1∑
ν=0

vνu
(ν)
i +

1

an

i−n∑
k=0

ck+nu
(n−1)
i−k−1 for i = 0, 1, 2, . . . (4.15)

with the definitions u
(n−1)
j = 0 for j < 0 and cj = 0 for j < n.
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Proof:

The first sum in (4.15) satisfies the homogeneous difference equation (4.8)
as well as the initial conditions (4.9). We have to show that the second
sum fulfills the inhomogeneous difference equation (4.8) with initial values
identical to zero. Let

wi :=
1

an

i−n∑
k=0

ck+nu
(n−1)
i−k−1.

Due to the definition u
(n−1)
j = 0 for j < 0 and u

(n−1)
0 = · · · = u

(n−1)
n−2 = 0 as

well as cj = 0 for j < n, the initial values are clearly zero. Moreover, we
can write

wi =
1

an

+∞∑
k=−∞

ck+nu
(n−1)
i−k−1 for i = 0, 1, 2, . . . ,

since all new terms are equal to zero. It follows

L(wi) =
n∑

s=0

aswi+s =
1

an

n∑
s=0

as

+∞∑
k=−∞

ck+nu
(n−1)
i−k−1+s

=
1

an

+∞∑
k=−∞

ck+n

n∑
s=0

asu
(n−1)
i−k−1+s =

1

an

i∑
k=0

ck+n

n∑
s=0

asu
(n−1)
i−k−1+s

=
1

an

i∑
k=0

ck+nL(u
(n−1)
i−k−1).

Due to L(u
(n−1)
j ) = 0 for all j ≥ 0 and u

(n−1)
l = δl,n−1 for all l ≤ n − 1, we

obtain

L(u
(n−1)
i−k−1) = anδik for k = 0, 1, . . . , i and i = 0, 1, 2, . . . .

Inserting this relation in the equation above yields L(wi) = ci+n. □

Definition 6 The linear difference scheme (4.8) is stable, if and only if the
corresponding characteristic polynomial (4.13) satisfies the root condition:

(i) |xµ| ≤ 1 for all simple roots (rµ = 1),

(ii) |xµ| < 1 for all multiple roots (rµ > 1).
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A fundamental system (u
(ν)
i ) for ν = 1, . . . , n is bounded, if it holds

|u(ν)i | ≤ C for all i ∈ N0 and all ν = 1, . . . , n

with some constant C > 0. For the specific fundamental system from
Theorem 7, it follows C ≥ 1.

Lemma 4 A fundamental system of the linear difference scheme (4.8) is
bounded if and only if all fundamental systems are bounded.

Proof:

Let (u
(ν)
i ) for ν = 1, . . . , n be a bounded fundamental system. Given an

arbitrary fundamental system (v
(ν)
i ) for ν = 1, . . . , n, it holds

v
(j)
i =

n∑
ν=1

αν,ju
(ν)
i for j = 1, . . . , n

with unique coefficients αν,j ∈ C due to Theorem 6. It follows

|v(j)i | ≤
n∑

ν=1

|αν,j| · |u(ν)i | ≤ n

(
max
ν,j

|αν,j|
)

max
ν=1,...,n

|u(ν)i | ≤ n

(
max
ν,j

|αν,j|
)
C.

Thus the arbitrary fundamental system is bounded. □

We have introduced the root condition, because we need the following prop-
erty.

Theorem 8 A fundamental system of the linear difference scheme (4.8) is
bounded if and only if the corresponding characteristic polynomial (4.13)
fulfills the root condition.

Proof:

Due to Lemma 4, it is sufficient to investigate the fundamental system (u
(ν)
i )

for ν = 1, . . . , n from Theorem 7.
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Let the root condition be satisfied. For simple roots with |xµ| ≤ 1, it follows∣∣∣u(1,µ)i

∣∣∣ = |xµi| = |xµ|i ≤ 1

for each i. For multiple roots |xµ| < 1, we obtain the stronger relation

lim
i→∞

u
(k+1,µ)
i = 0 for k = 0, 1, . . . , rµ − 1 ,

since the terms exhibit the form ui = q(i)xµ
i with polynomials q. In par-

ticular, the sequences are bounded.

Vice versa, assume that the root condition is violated. If a root exhibits
|xµ| > 1, then it follows∣∣∣u(1,µ)i

∣∣∣ = |xµi| = |xµ|i → ∞.

In case of a multiple root (rµ ≥ 2) with |xµ| = 1, we obtain∣∣∣u(2,µ)i

∣∣∣ = |ixµi| = i · |xµ|i = i→ ∞.

In both cases, the fundamental system becomes unbounded. □

Stability often means the Lipschitz-continuous dependence on perturbations
in the initial data. In case of a homogeneous linear difference equation (4.11)
and initial values (4.9) zero, the solution becomes identical to zero. Initial
values not equal to zero can be seen as a perturbation of this solution. Let
(u

(ν)
i ) for ν = 0, 1, . . . , n − 1 be the standardised fundamental system. If

and only if the root condition is satisfied, then this system is bounded, i.e.,
|u(ν)i | ≤ C with a constant C > 0. For initial values v0, v1, . . . , vn−1 ∈ C,
the corresponding solution becomes

vi =
n−1∑
ν=0

vνu
(ν)
i .

It follows

|vi| ≤
n−1∑
ν=0

|vν| · |u(ν)i | ≤ C

n−1∑
ν=0

|vν|.
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Thus the solution (vi) depends Lipschitz-continuously on the perturbations
v0, v1, . . . , vn−1.

Now consider two solutions (vi) and (wi) of the inhomogeneous linear dif-
ference equation (4.8). It holds

L(vi − wi) = L(vi)− L(wi) = ci+n − ci+n = 0,

i.e., the difference solves the homogeneous equation (4.11). Thus we can
represent the difference by the standardised fundamental system

vi − wi =
n−1∑
ν=0

(vν − wν)u
(ν)
i .

It follows

|vi − wi| ≤ C
n−1∑
ν=0

|vν − wν|

for each i. We recognise the Lipschitz-continuous dependence on the initial
data again.

4.3 Consistency, stability and convergence

We consider an initial value problem (2.1) of a scalar ODE. We apply an
equidistant grid

xi = x0 + ih for i = 0, 1, . . . , N with h :=
xend − x0

N
.

Let yi := y(xi) be the values of the exact solution, whereas ui denotes the
numerical approximations. Now we define a local discretisation error of a
multistep method. The scheme (4.7) can be written in the form

1

h

n∑
s=0

asui+s − F (xi, ui−m, . . . , ui+n) = 0.

Inserting the exact solution y(x) in this formula yields a defect, which is
the local discretisation error.
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Definition 7 (local discretisation error of multistep methods)
Let y(x) be the exact solution of the ODE-IVP y′ = f(x, y), y(x0) = y0.
The local discretisation error of the multistep method (4.7) is defined as the
defect

τ(h) :=
1

h

n∑
s=0

asy(xi+s)− F (xi, y(xi−m), . . . , y(xi+n)). (4.16)

This definition agrees to the local error of one-step methods, cf. (3.7).

For example, we consider an explicit linear multistep method (4.6). The approximation
becomes (βk = 0)

αkui+k +
k−1∑
l=0

αlui+l = h

k−1∑
l=0

βlf(xi+l, ui+l).

If the involved initial values are exact (ui+l = y(xi+l) for l = 0, . . . , k − 1), then it holds

αkui+k +
k−1∑
l=0

αly(xi+l) = h

k−1∑
l=0

βlf(xi+l, y(xi+l)).

The exact solution satisfies

αky(xi+k) +
k−1∑
l=0

αly(xi+l) = h

k−1∑
l=0

βlf(xi+l, y(xi+l)) + h · τ(h).

It follows
τ(h) =

αk

h
(y(xi+k)− ui+k).

The linear multistep method (4.6) can be normalized by setting αk := 1.

Again we define a consistency according to Def. 2.

Definition 8 (consistency of a multistep method)
The multistep method (4.7) is consistent if the local discretisation error
from (4.16) satisfies

lim
h→0

τ(h) = 0

uniformly in x, y. The method is consistent of (at least) order p, if it holds
τ(h) = O(hp).
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In our discussion, we include errors in the initial values as well as roundoff
errors in each step of the method now. We always have these errors in
practice. Thus we ask if the final approximation is still convergent in the
presence of the errors. We consider an interval [x0, xend] and equidistant
step sizes h = xend−x0

N . The multistep method (4.7) becomes

ui = yi + ρi for i = 0, 1, . . . ,m+ n− 1 ,
n∑

s=0

asui+s = hF (xi, ui−m, . . . , ui+n) + hρi+n

for i = m,m+ 1, . . . , N − n

(4.17)

with the errors ρ0, . . . , ρN and the exact solution yi = y(xi).

According to (4.16), the local discretisation error exhibits the form

τi+n =
1

h

n∑
s=0

asyi+s − F (xi, yi−m, . . . , yi+n) for i = m, . . . , N − n.

We make the following assumptions:

(i) It exists a function ρ(h) ≥ 0 for h ≥ 0 such that

|ρi| ≤ ρ(h) for all i = 0, . . . , N. (4.18)

(ii) If the right-hand side of the ODE becomes f(x, y) ≡ 0, then it follows

F (xi, ui−m, . . . , ui+n) ≡ 0 for all i = m, . . . , N − n

and all h ≥ 0.

(iii) The function F is Lipschitz-continuous: For all u, v ∈ Rm+n+1, it holds

|F (xi, vi−m, . . . , vi+n)− F (xi, ui−m, . . . , ui+n)| ≤ K
n∑

ν=−m

|vi+ν − ui+ν|

(4.19)
for each i = m, . . . , N − n, where the constant K ≥ 0 depends just on
the right-hand side f (and its derivatives).
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(iv) It exists a function τ(h) ≥ 0 for h ≥ 0 with

|τi+n| ≤ τ(h) for all i = m, . . . , N − n. (4.20)

In case of a linear multistep method (4.6), the assumption (iii) is satisfied if the right-hand
side f exhibits a Lipschitz-condition (2.3):

|F (xi, v)− F (xi, u)| =

∣∣∣∣∣
n∑

ν=−m

βνf(xi+ν , vi+ν)−
n∑

ν=−m

βνf(xi+ν , ui+ν)

∣∣∣∣∣
≤

n∑
ν=−m

|βν | · |f(xi+ν , vi+ν)− f(xi+ν , ui+ν)|

≤
n∑

ν=−m

|βν | · L · |vi+ν − ui+ν |

≤ L

(
max

j=−m,...,n
|βj|
) n∑

ν=−m

|vi+ν − ui+ν |

= L

(
max

j=−m,...,n
|βj|
)
∥v − u∥1.

According to Def. 8, the consistency of a multistep scheme implies the ex-
istence of a function τ(h) from assumption (iv) with

lim
h→0

τ(h) = 0.

The convergence of the method is defined as follows. (The same definition
can be done for one-step methods, if the influence of errors ρ0, . . . , ρN is
considered.)

Definition 9 (convergence of multistep method)
Assume that the function ρ(h) from (4.18) satisfies

lim
h→0

ρ(h) = 0.

The multistep method (4.17) is convergent, if it holds ( h = xend−x0

N )

lim
h→0

(
max

i=0,...,N
|ui − y(xi)|

)
= 0.

The method is convergent of (at least) order p if

max
i=0,...,N

|ui − y(xi)| = O(hp)

holds provided that ρ(h) = O(hp) is satisfied.
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The following theorem (Dahlquist 1956) connects consistency and conver-
gence. However, the stability of the involved difference scheme is required.

Theorem 9 (convergence of multistep methods)
Let the multistep method (4.7) be consistent with respect to the ODE-IVP
y′ = f(x, y), y(x0) = y0. The method (4.7) is convergent if and only if the
corresponding linear difference scheme is stable.

Proof:

1.) We assume that the root condition from Def. 6 is violated. We construct
an example, which does not converge. Consider f(x, y) ≡ 0, which implies
the solution y(x) ≡ 0 for the IVP y(x0) = 0. It follows F ≡ 0 due to our
assumption (iii).

Let ξ ∈ C be a simple root of pn(x) with |ξ| > 1 or a multiple root with
|ξ| ≥ 1. We define the perturbations in (4.17) via

ρi :=

{
h(ξi + ξ

i
) if |ξ| > 1

hi(ξi + ξ
i
) if |ξ| = 1

for i = 0, . . . , n− 1

and ρi := 0 for i = n, . . . , N . Since n > 0 is a fixed integer, it holds
ρ(h) = O(h). The multistep method (4.17) becomes

ui = ρi for i = 0, . . . , n− 1,
n∑

s=0

asui+s = 0 for i = n, . . . , N − n.

Due to our construction, the solution of this difference scheme is just

ui =

{
h(ξi + ξ

i
) if |ξ| > 1

hi(ξi + ξ
i
) if |ξ| = 1

for i = 0, . . . , N.

Remark that ui ∈ R for all i. It follows

uN = (xend − x0) ·

{
1
N (ξN + ξ

N
) if |ξ| > 1,

(ξN + ξ
N
) if |ξ| = 1.

67



Due to ξ = |ξ|eiφ, ξj = |ξ|jeijφ, ξj+ξj = 2|ξ|j cos(jφ), it follows for the final
approximation limh→0 uN ̸= 0. Hence the convergence is violated.

2.) Vice versa, we assume that the root condition from Def. 6 is satisfied
now. The global errors are ei := ui − yi. We define

ci+n := h(F (xi, ui−m, . . . , ui+n)− F (xi, yi−m, . . . , yi+n)) + hρi+n − hτi+n.

Subtraction of (4.7) and the relation of the exact solution (see (4.16)) yields

em+k = ρm+k for k = 0, 1, . . . , n− 1 ,
n∑

s=0

asei+s = ci+n for i = m,m+ 1, . . . , N − n .
(4.21)

According to Lemma 3, the solution of this difference scheme exhibits the
form

ei+m =
n−1∑
k=0

em+ku
(k)
i +

1

an

i−n∑
k=0

ck+m+nu
(n−1)
i−k−1 (4.22)

for i = 0, . . . , N −m, where (u
(k)
i ) for k = 0, 1, . . . , n− 1 is the standardised

fundamental system corresponding to L(uj) = 0. Since the root condition
is assumed, the fundamental system is bounded:

|u(k)i | ≤ Q for k = 0, 1, . . . , n− 1 and all i ∈ N0

with a constant Q ≥ 1. Due to the assumptions (4.18),(4.19) and (4.20), it
follows

|ck+m+n| ≤ h

(
K

m+n∑
ν=0

|ek+ν|+ ρ(h) + τ(h)

)
.

Now we estimate (4.22)

|ei+m| ≤ Qn max
k=0,...,n−1

|em+k|

+
Q

|an|
(i− n+ 1)h

(
(m+ n+ 1)K max

r=0,...,i+m
|er|+ ρ(h) + τ(h)

)
for i = n, . . . , N −m. The definition wi := max{|e0|, |e1|, . . . , |ei|} implies

|ei+m| ≤ Qnwm+n−1 +
Q

|an|
(i− n+ 1)h ((m+ n+ 1)Kwi+m + ρ(h) + τ(h)) .
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Since (wi)i∈N0
is a monotone increasing sequence and n ≥ 1, Q ≥ 1, it

follows

wi+m ≤ Qnwm+n−1 +
Q

|an|
ih ((m+ n+ 1)Kwi+m + ρ(h) + τ(h))

for i = 0, 1, . . . , N −m. For i = 0, 1, . . . , n−1, this estimate is clearly valid,
since the first term on the right-hand side is already an upper bound. We
define the constant γ := Q

|an|K(m+ n+ 1). The previous result yields

(1− γih)wi+m ≤ Qnwm+n−1 +
Q
|an|ih(ρ(h) + τ(h))

for i = 0, . . . , N − m. The condition γih ≤ 1
2 implies 1 − γih ≥ 1

2 . Since
|ei+m| ≤ wi+m and wm+n−1 ≤ ρ(h) holds, it follows

|ei+m| ≤ 2Q

(
nρ(h) +

ρ(h) + τ(h)

2γ|an|

)
for 0 ≤ i ≤ 1

2γh
. (4.23)

The restriction on i is equivalent to x0 ≤ xi ≤ x0+
1
2γ . Hence the convergence

is given in the interval [x0, x0 +
1
2γ ].

The same estimate holds in an arbitrary interval [x̂, x̂+ 1
2γ ] ⊂ [x0, xend] given

corresponding initial errors. In particular, the estimate (4.23) is valid in the
smaller interval [x0, x0+

1
4γ ]. The final values of this interval can be seen as

initial values for the next interval [x0 +
1
4γ , x0 +

2
4γ ]. The new initial errors

are bounded and converge to zero for h→ 0 due to (4.23). Successively, the
intervals

[x0, x0 +
1
4γ ], [x0 +

1
4γ , x0 +

2
4γ ], [x0 +

2
4γ , x0 +

3
4γ ], . . . , [x0 +

R
4γ , xend]

are considered, where R is the largest integer below the value 4γ(xend−x0).
The inequality (4.23) shows |ei+m| ≤ C1ρ(h)+C2τ(h) with constants C1, C2.
The constants are independent of the position within the global interval
[x0, xend]. W.l.o.g. let C1 > 1, i.e., C1 ̸= 1. By induction, it follows

|ej| ≤ CR+1
1 ρ(h) + C2τ(h)

R∑
l=0

C l
1 = CR+1

1 ρ(h) + C2
1− CR+1

1

1− C1
τ(h) (4.24)

for j = 0, 1, . . . , N . Hence the convergence is fulfilled in the global interval
[x0, xend], which concludes the second part of the proof. □
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Remarks:

• The first part of the proof does not apply the consistency of the method.
Indeed, the consistency is not necessary for the convergence, whereas
the stability is necessary for the convergence. There exist methods,
which are convergent but not consistent. However, a convergent linear
multistep method (4.6) can be shown to be consistent.

• If τ(h) = O(hp) and ρ(h) = O(hp) holds, then the estimate (4.24)
yields |ei| = O(hp) for i = 0, . . . , N . Thus consistency of (at least)
order p implies the convergence of (at least) order p.

• Theorem 9 also holds in case of systems of ODEs y′ = f(x, y) with
y : [x0, xend] → R

n. The required modifications in the above proof are
straightforward. A corresponding proof can be found in the book of
Stoer/Bulirsch.

• The statement of Theorem 9 cannot be generalised directly to the case
of non-constant step sizes hi := xi+1−xi. The step size selection has to
fulfill certain properties, which still guarantee a kind of stability. Thus
local error control, see Sect. 3.7, is more critical in case of multistep
methods.

4.4 Analysis of multistep methods

Given some linear multistep method (4.6), we like to know if the method
is convergent and (if yes) the corresponding order. Of course this property
depends on the choice of the coefficients, which are the degree of freedom
here.

In the previous section, we recognised that a linear multistep method is
convergent (of order p), if and only if the method is stable and consistent
(of order p). Thus to verify the convergence of a linear multistep method,
two properties have to be checked:
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• Stability of the method: Does the corresponding difference scheme sat-
isfy the root condition (see Def. 6)? This can be verified straightforward
by determining the roots of the characteristic polynomial.

• Consistency of the method: We require conditions to confirm the consis-
tency and to detect the corresponding order. Corresponding formulas
can be obtained similar to the procedure used in Sect. 3.5 for one-step
methods, which yields order conditions for the coefficients.

One-step methods

A general (explicit) one-step method can be written in the form

y1 = y0 + hΦ(x0, y0, h),

where the function Φ depends on the right-hand side f . The corresponding
homogeneous linear difference scheme reads y1 − y0 = 0. The characteristic
polynomial becomes p(λ) = λ − 1. Just the simple root λ1 = 1 appears.
Hence a one-step method of this form always satisfies the root condition,
i.e., it is stable.

Stability of methods based on quadrature

As an example, we verify the stability of the linear k-step methods intro-
duced in Sect. 4.1. The schemes exhibit the form (4.6) with

yi+k − yi+r = h [β0fi + β1fi+1 + · · ·+ βk−1fi+k−1 + βkfi+k] ,

where the quadrature is done in the interval [xi+r, xi+k] (r < k) and the
interpolation in the interval [xi, xi+k]. Let n := k − r. The characteristic
polynomial (see Def. 5) becomes

pn(λ) = λn − 1.

For the Adams methods, it holds r = k − 1 and n = 1. The characteristic
polynomial just exhibits the simple root λ = 1. Thus the root condition is
satisfied. For n > 1, the roots of the characteristic polynomial read

λj = ei2π
j−1
n for j = 1, 2, . . . , n.
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We obtain n simple roots satisfying |λj| = 1. Hence the root condition is
fulfilled again.

Order conditions

Now we derive conditions for the consistency of a linear k-step method up
to an arbitrary order p. The local discretisation error (4.16) can be written
as

τ(h) =
1

h

(
k∑

l=0

αly(x+ lh)− h

k∑
l=0

βly
′(x+ lh)

)
. (4.25)

Taylor expansion yields

y(x+ lh) =

p∑
q=0

y(q)(x) · (lh)
q

q!
+O(hp+1)

= y(x) +

p∑
q=1

y(q)(x) · (lh)
q

q!
+O(hp+1),

y′(x+ lh) =

p−1∑
q=0

y(q+1)(x) · (lh)
q

q!
+O(hp)

=

p∑
q=1

y(q)(x) · (lh)
q−1

(q − 1)!
+O(hp).

Inserting these expansions in the local error (4.25) results in

τ(h) =
1

h

(
k∑

l=0

αl

[
y(x) +

p∑
q=1

y(q)(x)
(lh)q

q!
+O(hp+1)

]

+ h
k∑

l=0

βl

[
p∑

q=1

y(q)(x)
(lh)q−1

(q − 1)!
+O(hp)

])

=
y(x)

h

k∑
l=0

αl +
1

h

k∑
l=0

[
p∑

q=1

y(q)(x)

q!
(αll

qhq + qβll
q−1hq)

]
+O(hp)

=
y(x)

h

k∑
l=0

αl +

p∑
q=1

y(q)(x)

q!

[
k∑

l=0

(αll
q + qβll

q−1)hq−1

]
+O(hp).
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We can read the order conditions from the above formula. For consistency
of order p = 1, we need τ(h) = O(h). It follows the conditions of order 1

k∑
l=0

αl = 0 and
k∑

l=0

(αll − βl) = 0. (4.26)

The additional conditions for order p > 1 become

k∑
l=1

αll
q = q

k∑
l=1

βll
q−1 for q = 2, . . . , p.

Remark that the first condition in (4.26) for consistency of order p = 1 is
equivalent to pn(1) = 0. Thus a consistent linear multistep method always
implies the root x = 1 of the characteristic polynomial.

If a method is consistent of exactly order p (i.e. it holds τ(h) = O(hp),
τ(h) ̸= O(hp+1)), then the local error exhibits the form

τ(h) = hpy(p+1)(x)
1

(p+ 1)!

[
k∑

l=1

(αll
p+1 − (p+ 1)βll

p)

]
+O(hp+1).

Thus this error depends on the magnitude of a higher-order derivative of
the solution.

Example: Adams-Moulton methods

We determine the order of consistency for the first two Adams-Moulton methods. The
coefficients can be found in Tab. 2.

The first method is the trapezoidal rule

−yi + yi+1 = h
[
1
2
fi +

1
2
fi+1

]
.

The involved coefficients are α0 = −1, α1 = 1, β0 = β1 =
1
2
. It follows

1∑
l=0

αl = −1 + 1 = 0

and
1∑

l=0

(αll − βl) = (−1) · 0− 1
2
+ 1 · 1− 1

2
= 0.
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Thus the order of the method satisfies p ≥ 1. The condition for p = 2 becomes

1∑
l=1

(αll
2 − 2βll

1) = 1 · 12 − 2 · 1
2
· 1 = 0.

It follows p ≥ 2. The condition for p = 3 is violated due to

1∑
l=1

(αll
3 − 3βll

2) = 1 · 13 − 3 · 1
2
· 12 = −1

2
̸= 0.

The trapezoidal rule is consistent of the exact order p = 2.

The second method reads

−yi+1 + yi+2 = h
[
− 1

12
fi +

8
12
fi+1 +

5
12
fi+2

]
.

The coefficients are α0 = 0, α1 = −1, α2 = 1, β0 = − 1
12
, β1 =

8
12
, β2 =

5
12
. The conditions

of order p = 1
2∑

l=0

αl = 0 + (−1) + 1 = 0

and
2∑

l=0

(αll − βl) = 0 · 0− (− 1
12
) + (−1) · 1− 8

12
+ 1 · 2− 5

12
= 0.

It follows the order p ≥ 1. The condition of order p = 2 is verified via

2∑
l=1

(αll
2 − 2βll

1) = (−1) · 12 − 2 · 8
12

· 11 + 1 · 22 − 2 5
12

· 21 = 0.

It follows the order p ≥ 2. The condition of order p = 3 becomes

2∑
l=1

(αll
3 − 3βll

2) = (−1) · 13 − 3 · 8
12

· 12 + 1 · 23 − 3 · 5
12

· 22 = 0.

It follows p ≥ 3. The condition or order p = 4 is violated:

2∑
l=1

(αll
4 − 4βll

3) = (−1) · 14 − 4 · 8
12

· 13 + 1 · 24 − 4 · 5
12

· 23 = −1 ̸= 0.

Hence the method is exactly of the order p = 3. It can be shown that the k-step Adams-
Moulton method is consistent of order p = k + 1 exactly.

74



It is natural to ask for the optimal order of convergence of a linear k-step
scheme (4.6) for fixed k. Without loss of generality, we assume αk = 1.
Thus we obtain 2k+1 degrees of freedom by the coefficients α0, . . . , αk−1 and
β0, . . . , βk. We can construct a method, which is consistent of order p = 2k,
since p+ 1 conditions have to be satisfied. However, our difference scheme
has to be stable to achieve a convergent method. The root condition implies
k contraints. A consistent scheme exhibits the root λ = 1, which already
satisfies the root condition. Hence k− 1 contraints remain. We expect that
the optimal order becomes p ≈ 2k− (k−1) = k+1. The following theorem
of Dahlquist (1956/59) presents the exact result.

Theorem 10 (first Dahlquist barrier) A linear k-step method, which
fulfills the stability condition, exhibits the maximum order

k + 2 if k is even,
k + 1 if k is odd,
k if βk/αk ≤ 0 (especially for explicit schemes).

For comparison, an implicit Runge-Kutta method with s stages exhibits
s2+ s coefficients. (The nodes follow from the inner weights due to (3.11).)
An explicit Runge-Kutta scheme has about s2

2 + s degrees of freedom. No
additional stability criterion has to be satisfied. The optimal order of con-
vergence in case of fixed s becomes p = 2s for implicit methods (Gauss-
Runge-Kutta) and p ≤ s for explicit methods. Remark that the maximal
order increases linearly with the stage number, whereas the number of co-
efficients grows quadratically.
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Finally, we show a result mentioned in the previous subsection.

Theorem 11 A convergent linear multistep method (4.6) is consistent.

Proof:

We have to show the two conditions (4.26).

We consider the ODE-IVP y′ = 0, y(0) = 1 with the exact solution y(x) ≡ 1.
The linear multistep method becomes

αkui+k + αk−1ui+k−1 + · · ·+ α1ui+1 + α0ui = 0. (4.27)

For x = 1 and hN := 1
N , the approximation at the point x = 1 is just uN .

The convergence of the method implies

lim
N→∞

uN = y(1) = 1.

Thus the limit i→ ∞ in (4.27) yields (because k is constant)

k∑
l=0

αl = αk + αk−1 + · · ·+ α1 + α0 = 0,

which is the first condition from (4.26).

Now we consider the ODE-IVP y′ = 1, y(0) = 0, where the solution becomes
y(x) ≡ x. Let x = 1 and hN := 1

N We try the ansatz ui = ihNK with some
constant K ∈ R. Inserting the ansatz in the linear difference scheme yields

k∑
l=0

αl(i+ l)hNK = hN

k∑
l=0

βl.

The previous result implies

K
k∑

l=0

αll =
k∑

l=0

βl ⇒ K =

(
k∑

l=0

βl

)
/

(
k∑

l=0

αll

)
. (4.28)
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Thus we have found a solution of the difference equation. Setting i = N
yields uN = K. The convergence of the method ensures

K = lim
N→∞

uN = y(1) = 1.

It remains to verify that the constant K exists. The characteristic polyno-
mial of the method is

p(λ) =
k∑

l=0

αlλ
l, p′(λ) =

k∑
l=1

αllλ
l−1.

The condition from above yields p(1) = 0. Since a convergent method is
stable due to Theorem 9, the root λ = 1 is simple. It follows p′(1) ̸= 0 and
the denominator in (4.28) is not equal to zero. Hence the second condition
from (4.26) is shown. □

4.5 Techniques based on numerical differentiation

We introduce another class of implicit multistep methods by using numerical
differentiation.

BDF methods

Given the ODE y′ = f(x, y), we can replace the derivative on the left-
hand side directly by a difference formula, which corresponds to a numerical
differentiation. Using the difference quotient yields

y′(x0 + h) = 1
h [y(x0 + h)− y(x0)] +O(h).

Together with y′(x0 + h) = f(x0 + h, y(x0 + h)), we obtain the numerical
method

y1 = y0 + hf(x0 + h, y1),

which is just the implicit Euler scheme.

This approach can be generalised to a k-step method as follows: Given
the old data (xi−k+l, yi−k+l) for l = 1, . . . , k, we arrange the interpolating

77



x xx xi−k+1 i i+1

y

p(x)

Figure 12: Construction of multistep method by numerical differentiation.

polynomial p ∈ Pk with

p(xi−k+l) = yi−k+l for l = 1, . . . , k, k + 1.

Thereby, the unknown value yi+1 is included in the interpolation, which
makes the method implicit. The strategy is outlined in Fig. 12. The un-
known value is determined by the demand

p′(xi+1) = f(xi+1, yi+1),

which corresponds to a collocation method. The resulting techniques are
called backward differentiation formulas (BDF).

The interpolating polynomial exhibits the form

p(x) =
k∑

j=0

yi+1−jLj(x)

with the Lagrange polynomials

Lj(x) =
k∏

ν=0,ν ̸=j

x− xi+1−ν

xi+1−j − xi+1−ν
.

We obtain

p′(xi+1) =
k∑

j=0

yi+1−jL
′
j(xi+1) = f(xi+1, yi+1).
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α0 α1 α2 α3 α4

k = 1 1 −1

k = 2 3
2

−2 1
2

k = 3 11
6

−3 3
2

−1
3

k = 4 25
12

−4 3 −4
3

1
4

Table 3: Coefficients in BDF method.

In case of equidistant step sizes (xl = x0 + lh), the Lagrange polynomials
can be transformed to

L̃j(u) =
k∏

ν=0,ν ̸=j

u+ ν − 1

ν − j
with x = xi + uh.

The new polynomials are independent of the index i. The resulting k-step
method exhibits the form

α0yi+1 + α1yi + · · ·+ αk−1yi−k+2 + αkyi−k+1 = hf(xi+1, yi+1) (4.29)

with constant coefficients

αj = L̃′
j(1) for j = 0, . . . , k.

(Recall that it holds dx = hdu.) Table 3 illustrates the coefficients of the
first four BDF methods.

Remark that all coefficients are determined by the approach based on the
polynomial interpolation and the collocation technique. We do not have
further degrees of freedom to satisfy the stability, i.e., the root condition.
Fortunately, it turns out that the BDF methods are stable up to k ≤ 6
(unstable for all k ≥ 7).

Concerning consistency, it holds the following theorem.

Theorem 12 The k-step BDF method is consistent of order k.

Outline of the proof:

The polynomial p interpolates data corresponding to the solution y(x). Let
the data be exactly the values of the solution y(x). Since k + 1 points are
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interpolated, the approximation exhibits an error

y(x)− p(x) = O(|h|k+1) for x ∈ [xi−k+1, xi+1],

where |h| denotes the maximum of all involved step sizes. The derivative of
the polynomial yields an approximation satisfying

y′(x)− p′(x) = O(|h|k) for x ∈ [xi−k+1, xi+1].

It follows

p′(xi+1) = y′(xi+1) +O(|h|k) = f(xi+1, y(xi+1)) +O(|h|k)

and thus the local error becomes

τ =

[
k∑

j=0

y(xi+1−j)L
′
j(xi+1)

]
− f(xi+1, y(xi+1)) = O(|h|k).

This property represents the consistency of order k. □

Hence the k-step BDF method is convergent of order k provided that k ≤ 6.

NDF methods

The formula (4.29) of the BDF method can be modified to

k∑
l=0

αlyi+1−l = hf(xi+1, yi+1) + κγk

(
yi+1 − y

(0)
i+1

)
(4.30)

with an arbitrary constant κ ∈ R and

γk =
k∑

j=1

1

j
.

The starting value y
(0)
i+1 is obtained by interpolating the k + 1 old values

yi−k, . . . , yi and evaluating the polynomial at x = xi+1. It follows

y(xi+1)− y
(0)
i+1 = O(hk+1)
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and thus the method (4.30) exhibits the order of consistency k. Techniques
of the form (4.30) are called numerical differentiation formulas (NDF). The
first-order NDF method is

yi+1 − yi − κ(yi+1 − 2yi + yi−1) = hf(xi+1, yi+1),

which is already a two-step technique. Likewise, the kth-order NDF scheme
is a (k + 1)-step method.

In the formulas (4.30), the parameter κ can be chosen such that the leading
term in the local error becomes minimal, while still good stability properties
are preserved with respect to stiff ODEs. The optimal value is κ = −1

9 in
case of k = 2. It follows that for the same accuracy the step sizes can be
selected about 26% larger than in the corresponding BDF2 method. The
methods are stable for k ≤ 5. However, the stability properties become
slightly worse than in case of the BDF methods.

4.6 Predictor-Corrector-Methods

We consider IVPs of systems of ODEs y′ = f(x, y), y(x0) = y0. In this sub-
section, we discuss the solution of nonlinear systems of algebraic equations,
which result from implicit multistep methods. A linear k-step method reads

yi+1 − hβ0f(xi+1, yi+1) = h
k∑

l=1

βlf(xi+1−l, yi+1−l)−
k∑

l=1

αlyi+1−l. (4.31)

The equations (4.31) represent a system of n algebraic equations for the
unknown values yi+1 ∈ Rn. The right-hand side

wi := h
k∑

l=1

βlf(xi+1−l, yi+1−l)−
k∑

l=1

αlyi+1−l

is given.

The nonlinear system

yi+1 − hβ0f(xi+1, yi+1)− wi = 0
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can be solved numerically by the Newton method. We define the matrices
A(ν) ∈ Rn×n

A(ν) := I − hβ0(Df)(xi+1, y
(ν)
i+1)

with the identity matrix I ∈ R
n×n and the Jacobian matrix Df ∈ R

n×n.
The iteration reads

A(ν)∆y
(ν)
i+1 = y

(ν)
i+1 − hβ0f(xi+1, y

(ν)
i+1)− wi

y
(ν+1)
i+1 = y

(ν)
i+1 −∆y

(ν)
i+1

for ν = 0, 1, 2, . . . with some starting value y
(0)
i+1 ∈ Rn. Thus we obtain a

sequence of linear systems. In this situation, an appropriate starting value
is y

(0)
i+1 = yi. We apply the simplified Newton method to save computational

effort. The iteration becomes

A(0)∆y
(ν)
i+1 = y

(ν)
i+1 − hβ0f(xi+1, y

(ν)
i+1)− wi

y
(ν+1)
i+1 = y

(ν)
i+1 −∆y

(ν)
i+1

(4.32)

for ν = 0, 1, 2, . . .. The speed of convergence is linear. The computational
work of this simplified Newton iteration can be characterised as follows:

Start-up phase:

1. Compute the Jacobian matrix Df at x = xi+1, y = y
(0)
i+1. If numerical

differentiation is used, then n additional function evaluations of f are
required.

2. Decompose A(0) = L · U into lower triangular matrix L and upper
triangular matrix U . The computational effort is ∼ n3.

In each step:

1. Evaluate f at x = xi+1, y = y
(ν)
i+1.

2. Solve the linear system in (4.32) using the LU -decomposition. The
work for each forward and backward substitution is ∼ n2.
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If step size control is used and the Newton iteration does not converge,
then the step size hi = xi+1 − xi is reduced. For example, the iteration is
restarted with the new grid point xi+1 = xi+

hi

2 , since the available starting

value y
(0)
i+1 = yi becomes a better approximation due to the continuity of the

exact solution.

We can apply an alternative strategy, which saves much more computational
effort. The nonlinear system (4.31) can be written as a fixed point problem

yi+1 = Φ(yi+1)

with the function

Φ(yi+1) = hβ0f(xi+1, yi+1) + wi.

Following Banach’s theorem, the according fixed point iteration

y
(ν+1)
i+1 = Φ(y

(ν)
i+1) for ν = 0, 1, 2, . . . (4.33)

is convergent, if the mapping Φ is contractive. In an arbitrary vector norm,
it follows

∥Φ(y)− Φ(z)∥ = ∥hβ0f(xi+1, y) + wi − (hβ0f(xi+1, z) + wi)∥
= h · |β0| · ∥f(xi+1, y)− f(xi+1, z)∥
≤ h · |β0| · L · ∥y − z∥

provided that the right-hand side satisfies the Lipschitz-condition (2.3) with
constant L > 0. Consequently, the mapping Φ is contractive for

h · |β0| · L < 1 ⇔ h <
1

|β0| · L
. (4.34)

Thus we achieve a convergent fixed point iteration for sufficiently small
step sizes. The speed of convergence is linear with constant h|β0|L. The
computational effort of each step (4.33) consists just in one evaluation of
the right-hand side f . In particular, no linear systems have to be solved.

However, the contractivity condition (4.34) restricts the step size signif-
icantly in case of large constants L. Huge Lipschitz-constants L appear
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in stiff systems of ODEs, which represent mathematical models in many
applications. In these cases, the fixed point iteration (4.33) becomes use-
less, since a huge number of integration steps is required. In contrast, the
Newton method still yields according approximations for much larger step
sizes h.

Now we consider the implicit multistep method (4.31) for moderate con-
stants L. The determination of the unknown yi+1 can be done by a predictor-
corrector-method. The technique consists of two parts:

• Predictor method: A scheme that yields a good starting value.

• Corrector method: An iteration scheme converging to the a priori un-
known value, where a constant number of iteration steps is done.

As an example, we consider the Adams-Moulton methods. The k-step (im-
plicit) Adams-Moulton method (4.4) exhibits the order k + 1, whereas the
k-step (explicit) Adams-Bashforth method (4.3) is of order k. We choose the
fixed point iteration (4.33) as corrector step. The k-step Adams-Bashforth
method is used as predictor.

We denote the application of the predictor by P, a step of the corrector
by C and a required evaluation of the right-hand side f by E (since the
computational effort is specified by the number of function evaluations).
Let fi := f(xi, yi). It follows a P(EC)mE-method for a constant integer m.
Table 4 specifies the algorithm. Usually just m = 1 or m = 2 is used, since
more corrector steps do not increase the accuracy significantly.

In practice, the P(EC)mE-method is used with variable step sizes, where
the coefficients have to be recomputed in each step by divided differences
(Newton interpolation). The difference

y
(m)
i+1 − y

(0)
i+1 = O(hk+1)

yields the error estimate in the step size control, since y
(0)
i+1 is an approxi-

mation of order k and y
(m)
i+1 is an approximation of order k+1, see Sect. 3.7.

Moreover, variable orders are applied corresponding to an order control.
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Algorithm: P(EC)mE method

P: y
(0)
i+1 := yi + h(β1fi + β2fi−1 + · · ·+ βkfi−k+1) (Adams-Bashforth)

for ν = 0, 1, . . . ,m− 1

E: f
(ν)
i+1 := f(xi+1, y

(ν)
i+1)

C: y
(ν+1)
i+1 := yi + h(β∗

0f
(ν)
i+1 + β∗

1fi + β∗
2fi−1 + · · ·+ β∗

kfi−k+1)

(fixed point iteration for Adams-Moulton)

E: fi+1 := f(xi+1, y
(m)
i+1) (required for the next integration step)

Table 4: Algorithm of predictor-corrector method for one integration step.

4.7 Order control

The step size control estimates the largest step sizes such that the local error
is below a given bound, see Sect. 3.7. The aim is to keep the number of
required steps low in the integration. The number of steps can be reduced
further by an order control. Assume that several methods with the order of
convergence p = 1, 2, . . . , pmax are available (pmax = 5−15 in practice). The
idea is to choose the method, which exhibits the largest step size prediction
in the next step.

Assume that the step size h is selected and an order p is suggested. Then we
compute the approximations from the methods p−1, p, p+1. Each method
implies a corresponding estimate of an optimal step size hp−1, hp, hp+1. If
one of the step sizes is above h, then the step is accepted. Furthermore let
wp be a quantification of the computational effort for one step using the
method of order p. (For example, the number of function evaluations of the
right-hand side.) Now each method implies an estimate

σp−1 :=
wp−1

hp−1
, σp :=

wp

hp
, σp+1 :=

wp+1

hp+1

of the computational work per unit step size. We apply the order p̂ with the
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lowest value σp̂ as suggestion for the optimal order in the next step. The
step size hp̂ is used in the next step.

Algorithms of linear multistep methods usually apply order control, for ex-
ample, based on the Adams methods or the BDF methods. The reason is
that the effort wp is nearly independent of the value p for these methods.
Remark that just m + 1 additional function evaluations are necessary in
each step of the P(EC)mE method for arbitrary order, since the other func-
tion evaluations are available from the previous steps. In contrast, explicit
Runge-Kutta methods exhibit roughly wp ≈ Cp with a constant C, since
p ≈ s with the number of stages s.

Another class of techniques with a naturally variable order are the extrap-
olation methods. These techniques can be based on one-step methods or
multistep methods.

Remark that each implementation of order control includes many sophisti-
cated specifics in dependence on the underlying methods.

Outlook: General linear methods

It is obvious to ask for a combination of the concepts for Runge-Kutta meth-
ods (see Sect. 3.5) and for linear multistep methods (see Sect. 4.1). The
resulting techniques include several given approximations from previous grid
points as well as a priori unknown intermediate values. The corresponding
schemes belong to the class of general linear methods. More details can
be found in: Hairer, Nørsett, Wanner: Solving Ordinary Differential Equa-
tions I. (2nd Ed.) Springer. (Sect. III.8)
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Chapter 5

Integration of Stiff Systems

5

Stiff systems of ordinary differential equations appear in many applications
like chemical reactions, mechanical engineering and electric circuit simula-
tion, for example. In principle, these systems can be solved by each con-
vergent method introduced in the previous two chapters. However, explicit
methods must not be used, since they are not efficient for stiff problems.
This motivates the need for implicit methods.

5.1 Examples

To illustrate the phenomenon of stiffness, we consider two examples of sys-
tems of ODEs: the Van-der-Pol oscillator and a particular linear system of
ODEs.

Van-der-Pol oscillator

The second-order ODE describing the Van-der-Pol oscillator reads

z′′(t) + µ(z(t)2 − 1)z′(t) + z(t) = 0

with the scalar parameter µ > 0. To achieve a frequency (nearly) in-
dependent of the parameter, we apply the scaling x = t

µ . It follows for
y(x) = z(µx)

1
µ2y

′′(x) + (y(x)2 − 1)y′(x) + y(x) = 0.
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Figure 13: Solutions of Van-der-Pol oscillator.

Initial values y(0) = 2 and y′(0) = 0 are imposed. We apply the equivalent
system of first order

y′1(x) = y2(x),

y′2(x) = −µ2((y1(x)2 − 1)y2(x) + y1(x)).

Fig. 13 illustrates solutions for two different parameters µ.

We solve the system with two methods: an explicit Runge-Kutta method of
order 2(3) and the (implicit) trapezoidal rule (order 2). In both integrators,
a local error control is used with the tolerances rtol = 10−2 and atol = 10−4.
The simulations are done in the interval x ∈ [0, 5]. Table 5 illustrates the
number of required steps in the integration for different parameters µ. Re-
mark that the computational effort is proportional to the number of steps
in each method. We recognise that the explicit method requires more and
more steps for increasing parameter µ. If the step size is enlarged in the
explicit scheme, then the integration fails. In contrast, the number of steps
increases just slightly in the implicit method. Thus implicit integrators be-
come superior. The behaviour of the system of ODEs for large parameters µ
is called stiff.
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explicit method implicit method
µ = 5 145 201
µ = 10 434 294
µ = 50 9017 483
µ = 100 36.067 542
µ = 200 144.453 616
µ = 1000 3.616.397 624

Table 5: Number of steps in simulation of Van-der-Pol oscillator.

Linear System of ODEs

We discuss a particular linear system of ODEs, namely(
y′1(x)
y′2(x)

)
=

(
−298 99
−594 197

)(
y1(x)
y2(x)

)
. (5.1)

The matrix exhibits the eigenvalues λ1 = −1 and λ2 = −100 with cor-
responding eigenvectors v1 = (1, 3)⊤ and v2 = (1, 2)⊤. Hence the general
solution of the system (5.1) reads

y(x) = C1e
−x

(
1
3

)
+ C2e

−100x

(
1
2

)
with arbitrary constants C1, C2 ∈ R. All solutions satisfy

lim
x→∞

y(x) = 0.

However, one term (w.r.t. λ2) decreases rapidly, whereas the other term
(w.r.t. λ1) decreases relatively slowly.

We consider the initial value problem y1(0) = −1
2 and y2(0) = 1

2 . Fig. 14
(left) illustrates the corresponding solution. We apply an explicit Runge-
Kutta method of order 2(3) and the trapezoidal rule with step size control
(rtol = 10−3, atol = 10−6) again. In the interval x ∈ [0, 10], the ex-
plicit scheme requires 413 steps and the implicit scheme needs just 94 steps.
Fig. 14 (right) shows that the explicit method also chooses small step sizes
at the end of the interval, where the solution is nearly constant. If the step
size is increased in the explicit method, then the corresponding approxi-
mations become completely wrong. We want to understand this different
performance of the integration techniques.
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Figure 14: Stiff linear system: exact solution (left) – y1 (solid line) and y2 (dashed line) –
as well as numerical approximations from explicit method with step size control (right).

According to this example, the stiff behaviour can be characterised as fol-
lows: The solutions of initial value problems tend rapidly to solutions, which
vary just slowly. However, in a neighbourhood of the slowly changing solu-
tions, there exist fastly changing solutions.

5.2 Test equations

We analyse the previous linear example in a general context now. Given a
linear system of ODEs

y′(x) = Ay(x), y : R→ R
n, A ∈ Rn×n, (5.2)

we assume that the involved matrix is diagonalisable, i.e.,

A = T−1DT, T ∈ Cn×n, D = diag(λ1, . . . , λn).

The eigenvalues λ1, . . . , λn ∈ C may be complex numbers also in case of a
real matrix A. Using the transformation z(x) = Ty(x), the system decou-
ples into the scalar linear ODEs

z′j(x) = λjzj(x) for j = 1, . . . , n. (5.3)

According initial values are transformed via z(x0) = Ty(x0).
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Dahlquist test equation

Due to the decoupled ODEs (5.3), we discuss the scalar linear ODE

y′(x) = λy(x), y : R→ C, λ ∈ C. (5.4)

The ODE (5.4) is called Dahlquist test equation (1963). Given an initial
value y(0) = y0, the exact solution reads

y(x) = y0e
λx = y0e

Re(λ)x · ei·Im(λ)x.

It follows
|y(x)| = |y0| · eRe(λ)x.

If Re(λ) < 0 holds, then the solution decreases monotonically.

We will apply the explicit Euler method and the implicit Euler method to
the test problem. Fig. 15 illustrates numerical solutions for λ = −10 and
initial value y0 = 1. We recognise that the implicit technique reproduces
the qualitiative behaviour of the exact solution correctly for all step sizes.
In contrast, the explicit method is qualitatively adequate only for small step
sizes.

It is not difficult to explain the performance of the Euler methods:

(i) Explicit Euler method
Applied to Dahlquist’s test equation (5.4), the scheme reads

y1 = y0 + hλy0 = (1 + hλ)y0.

It follows successively (yj is approximation of y(jh))

yj = (1 + hλ)j y0.

Hence it holds |yj| ≤ |yj−1| if and only if

|1 + hλ| ≤ 1.

For λ ∈ R and λ < 0 (and of course h > 0), we obtain a step size
restriction

h ≤ 2
|λ| .

Only for step sizes satisfying this condition, the approximations do not
increase. For large |λ|, the step size h has to be small.
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explicit Euler method :
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implicit Euler method :
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Figure 15: Solutions of Dahlquist’s test equation with λ = −10: exact solution (solid line)
and approximations (circles).

92



(ii) Implicit Euler method
Now Dahlquist’s test equation (5.4) leads to the scheme

y1 = y0 + hλy1 ⇒ y1 =
1

1− hλ
y0.

We obtain the approximations

yj =

(
1

1− hλ

)j

y0.

The property |yj| ≤ |yj−1| is valid if and only if∣∣∣∣ 1

1− hλ

∣∣∣∣ ≤ 1 ⇔ 1 ≤ |1− hλ|

holds. For λ ∈ R and λ < 0, this requirement is satisfied for arbitrary
step size h > 0. Thus there is no restriction on the step size.

We investigate Dahlquist’s equation in case of parameters λ with large neg-
ative real part. Remark that the corresponding Lipschitz constant becomes
large, since it follows for f(x, y) = λy

|f(x, y)− f(x, z)| = |λy − λz| = |λ| · |y − z|.

Hence the fixed point iteration in predictor-corrector methods, cf. Sect. 4.6,
exhibits a significant step size restriction needed for convergence.

Prothero-Robinson test equation

Another scalar problem, which illustrates stiff behaviour, is the Prothero-
Robinson test equation (1973)

y′(x) = λ(y(x)− φ(x)) + φ′(x), y(x0) = y0 (5.5)

with solution y : R→ R and a real parameter λ < 0. The smooth function
φ : R→ R is predetermined. The solutions of the initial value problem (5.5)
read

y(x) = (y0 − φ(x0))e
λ(x−x0) + φ(x).
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Figure 16: Solutions of several initial value problems corresponding to the Prothero-
Robinson test equation with parameter λ = −100, function φ(x) = 2x − 1 (left) and
φ(x) = sin(2πx) (right).

The particular solution y ≡ φ represents an asymptotic phase, i.e. the other
solutions tend rapidly to this function in case of large negative parameters λ.
Fig. 16 illustrates two examples. Furthermore, the choice φ ≡ 0 yields
Dahlquist’s test equation (5.4).

Definition of stiff linear systems

We define the phenomenon of stiffness for linear systems now. Remark
that it does not exist a precise definition of stiffness (for linear or nonlinear
systems). One reason is that stiffness is not only a qualitative behaviour
but also a quantitative behaviour. We formulate the two definitions:

• In the linear system y′ = Ax, assume that all eigenvalues λj exhibit a
negative real part. The system is stiff, if it exist eigenvalues with small
negative real part as well as large negative real part, i.e., the ratio

max
j=1,...,n

|Re(λj)|

min
j=1,...,n

|Re(λj)|
(5.6)

is very large. (If all eigenvalues exhibit a large negative real part with
the same magnitute, i.e., the ratio (5.6) is small, then the stiff behaviour
can be transformed out of the system.)
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• The following characterisation due to Curtis and Hirschfelder (1952)
was found from their observations in simulating chemical reaction ki-
netics (and holds also for nonlinear systems): ”Stiff equations are equa-
tions, where certain implicit methods perform better – usually tremen-
dously better – than explicit ones.” In short form: Implicit is better
than explicit.

5.3 A-stability for one-step methods

The performance of the Euler methods applied to Dahlquist’s test equa-
tion (5.4) motivates the definition of a stability concept. Stability is seen
as a necessary (not sufficient) condition to achieve suitable approximations.
In this section, we consider just one-step methods.

Definition 10 (A-stability of one-step methods)
A one-step method is A-stable if the corresponding sequence of approxima-
tions (yj)j∈N for Dahlquist’s equation (5.4) with Re(λ) ≤ 0 for any step size
h > 0 is not increasing, i.e., |yj+1| ≤ |yj| holds for all j.

If a one-step method is A-stable, then it is suitable for solving stiff linear
system of ODEs. Vice versa, a technique, which is not A-stable, should not
be used for (linear or nonlinear) stiff problems.

We want to obtain a technique for verifying if a method is A-stable or not.
We use the abbreviation z := hλ ∈ C in the following. On an equidistant
grid xj = x0 + jh, the exact solution of Dahlquist’s equation (5.4) satisfies

y(xj+1) = ehλy(xj) = ezy(xj).

Thus it holds |y(xj+1)| ≤ |y(xj)| if and only if Re(λ) ≤ 0, which is equivalent
to Re(z) ≤ 0. Applied to Dahlquist’s test equation, the Euler methods can
be written in the form

yj+1 = R(z)yj

with

expl. Euler : R(z) = 1 + z, impl. Euler : R(z) =
1

1− z
.
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We want that |R(z)| ≤ 1 holds for each z with Re(z) ≤ 0. Each one-step
method yields a formula y1 = R(z)y0. The mapping R : C → C is called
the stability function of the method.

Definition 11 (stability domain of one-step methods)
The stability domain S ⊂ C of a one-step method y1 = R(z)y0 is the set

S := {z ∈ C : |R(z)| ≤ 1}.

Furthermore, we define C− := {z ∈ C : Re(z) ≤ 0}. Hence A-stability is
characterised as follows

A-stable ⇔ |R(z)| ≤ 1 for all z ∈ C− ⇔ C
− ⊆ S.

For the Euler methods, the stability domains read

expl. Euler: S = {z ∈ C : |1 + z| ≤ 1},
impl. Euler: S =

{
z ∈ C :

∣∣ 1
1−z

∣∣ ≤ 1
}
= {z ∈ C : 1 ≤ |1− z|}.

These stability domains are the inside of a circle around z = −1 with
radius 1 and the outside of a circle around z = 1 with radius 1, respectively,
see Fig. 17. Hence C− ⊆ S holds for the implicit Euler method but not for
the explicit Euler method.

Example: Trapezoidal rule

The trapezoidal rule applied to Dahlquist’s test equation (5.4) yields

y1 = y0 +
h
2 [λy0 + λy1] .

It follows

y1 =
1 + 1

2hλ

1− 1
2hλ

y0.

The stability function becomes

R(z) =
1 + 1

2z

1− 1
2z
.
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A detailed analysis shows that S = C
− in this case. Thus the trapezoidal

rule is A-stable.

Example: Explicit midpoint rule

The explicit midpoint rule (3.5) implies

y1 = y0 + hλ
(
y0 +

h
2λy0

)
=
(
1 + hλ+ 1

2h
2λ2
)
y0

when used for Dahlquist’s equation (5.4). We obtain the stability function

R(z) = 1 + z + 1
2z

2.

It follows that the explicit midpoint rule is not A-stable.

Fig. 17 illustrates the stability domains of the four elementary one-step
methods discussed above, cf. Sect. 3.2.

General Runge-Kutta method

A general Runge-Kutta method with s stages for the ODE-IVP y′ = f(x, y),
y(x0) = y0 reads

ki = f

(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
for i = 1, . . . , s ,

y1 = y0 + h
s∑

i=1

biki.

The method is uniquely determined by its coefficients

c = (ci) ∈ Rs, b = (bi) ∈ Rs, A = (aij) ∈ Rs×s.

In case of Dahlquist’s test equation y′ = λy, a formula for the corresponding
stability function can be derived. This formula is valid for both explicit and
implicit Runge-Kutta methods.
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Figure 17: Stability domains of some important one-step methods.
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Theorem 13 (stability function of Runge-Kutta method)
The stability function of a Runge-Kutta scheme is given by

R(z) = 1 + zb⊤(I − zA)−1
1 (5.7)

with 1 := (1, . . . , 1)⊤ ∈ Rs and identity matrix I ∈ Rs×s or, equivalently,

R(z) =
det(I − zA+ z1b⊤)

det(I − zA)
.

Theorem 13 demonstrates that the stability function of a Runge-Kutta
method is a rational function in the variable z. The stability function is
not defined in case of det(I − zA) = 0. Thus a finite number of poles may
appear.

An explicit Runge-Kutta scheme corresponds to a strictly lower triangular
matrix A. It follows det(I − zA) = 1 for all z ∈ C. The stability function
of an explicit Runge-Kutta method is a polynomial

R(z) = α0 + α1z + α2z
2 + · · ·+ αs−1z

s−1 + αsz
s.

Consequently, it holds

|R(z)| Re(z)→−∞−→ +∞.

Hence an explicit Runge-Kutta method is never A-stable.

L-stability

The concept of L-stability represents an improvement of the A-stability.
Again the property is based on Dahlquist’s test equation (5.4). The exact
solution satisfies

y(h) = ezy(0) with z = hλ.

In the limit case of parameters λ with huge negative real part, it follows

lim
Re(z)→−∞

y(h) = y(0) lim
Re(z)→−∞

ez = 0.

We want that the numerical approximation

y1 = R(z)y0

of a one-step method inherits this property.
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Definition 12 (L-stability) A one-step method is called L-stable, if it is
A-stable and in addition

lim
z→∞

R(z) = 0.

Remark that R(z) is a rational function in case of one-step methods. Thus
it holds

lim
Re(z)→−∞

R(z) = lim
|z|→∞

R(z) = lim
z→∞

R(z)

provided that the limit exists. A rational function R(z) exhibits the form

R(z) =
a0 + a1z + · · ·+ an−1z

n−1 + anz
n

b0 + b1z + · · ·+ bm−1zm−1 + bmzm

with an, bm ̸= 0. It follows

lim
z→∞

|R(z)|


= 0 for n < m,

=
∣∣∣anbn ∣∣∣ for n = m,

→ ∞ for n > m.

It follows that the implicit Euler method is L-stable, since

lim
z→∞

R(z) = lim
z→∞

1

1− z
= 0.

However, the trapezoidal rule yields for ω ∈ R

|R(iω)|2 =
|1 + 1

2 iω|
2

|1− 1
2 iω|2

=
1 + 1

4ω
2

1 + 1
4ω

2
= 1.

Since R(z) is a rational function, we obtain

lim
z→∞

R(z) = 1

and thus the trapezoidal rule is not L-stable. Consequently, the trapezoidal
rule is not appropriate for extremely stiff linear problems.

Padé-approximation

We reconsider Dahlquist’s test equation (5.4). Let y(h) = ezy0 be the exact
solution and y1 = R(z)y0 the approximation from a method. It follows

y(h)− y1 = (ez −R(z)) y0.
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j/k 0 1 2 · · ·

0
1

1

1 + z

1

1 + z + 1
2
z2

1
· · ·

1
1

1− z

1 + 1
2
z

1− 1
2
z

1 + 2
3
z + 1

6
z2

1− 1
3
z

2
1

1− z + 1
2
z2

1 + 1
3
z

1− 2
3
z + 1

6
z2

1 + 1
2
z + 1

12
z2

1− 1
2
z + 1

12
z2

...
...

. . .

Table 6: Padé-approximations of ez.

Thus we expect good approximations if the stability function approximates
the exponential function appropriately. The correct approximation of the
limit case Re(z) → −∞ corresponds to the L-stability. The behaviour for
z → 0 leads to the general approach of the Padé-approximation.

Definition 13 (Padé-approximation) Let g : C → C be analytic in a
neighbourhood of z = 0. The rational function

Rjk(z) =
Pjk(z)

Qjk(z)

with Pjk(z) = a0+a1z+ · · ·+akzk and Qjk(z) = 1+ b1z+ · · ·+ bjzj is called
the Padé-approximation of g with index (j, k), if it holds

R
(l)
jk (0) = g(l)(0) for l = 0, 1, . . . , j + k.

If the Padé approximation exists, then it is unique. It follows

Rjk(z) = g(z) +O(zj+k+1) for z → 0.

All Padé-approximations of the exponential function g(z) = ez exist.

Table 6 shows some Padé-approximations of the exponential functions. We
recognise the stability functions of the explicit Euler method (0,1), the im-
plicit Euler method (1,0) and the trapezoidal rule (1,1). An approximation
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Figure 18: Exponential function ez (solid line) and some Padé-approximations Rjk(z) of
index (j, k) (dashed lines) for real z ∈ [−5, 1].
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for k > j cannot correspond to an A-stable method. The Gauss-Runge-
Kutta methods yield the stability functions for the diagonal j = k (implicit
midpoint rule (3.12) owns the same stability function as trapezoidal rule)
and are A-stable. However, since |aj| = |bk| holds for j = k, these methods
are not L-stable. Alternatively, Runge-Kutta methods exist corresponding
to each j = k+1 (the subdiagonal), which are A-stable as well as L-stable.

Remark that an explicit Runge-Kutta method exhibits a polynomial as sta-
bility function. A polynomial represents a bad approximation for a decreas-
ing exponential function. In contrast, a rational function can approximate
a decaying exponential function much better. Only implicit methods yield
rational stability functions. Fig. 18 depicts some Padé-approximations of
the exponential function for z from a real interval, which confirm these
statements.

5.4 Implicit Runge-Kutta methods

Since an explicit Runge-Kutta method is never A-stable, we have to apply
implicit Runge-Kutta (IRK) schemes to solve stiff problems.

Collocation methods

An important class of implicit Runge-Kutta methods are collocation meth-
ods. These schemes are successful in solving stiff systems of ODEs. Given
the ODE-IVP y′ = f(x, y), y(x0) = y0, we want to construct an approxi-
mation y1

.
= y(x0 + h). The idea of collocation methods is simple: Choose

nodes 0 ≤ c1 < c2 < · · · < cs ≤ 1. Determine the polynomial w ∈ Ps via
the conditions

w(x0) = y0,

w′(x0 + cih) = f(x0 + cih,w(x0 + cih)) for i = 1, . . . , s.

Hence we demand that the ODE is satisfied by the polynomial in the collo-
cation points xi := x0 + cih. The approximation becomes y1 := w(x0 + h).
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We obtain a Runge-Kutta scheme. Using the Lagrange polynomials

Lj : R→ R, Lj(xi) =

{
1 if j = i,

0 if j ̸= i,
for j, i = 1, . . . , s ,

the coefficients of the Butcher tableau read

bi =

∫ 1

0

Li(x0 + uh) du, aij =

∫ ci

0

Lj(x0 + uh) du (5.8)

for i, j = 1, . . . , s. Each element aij is non-zero in general, which implies
an implicit technique. The method is uniquely determined by the nodes
c1, . . . , cs. We choose the nodes from a quadrature scheme like Gaussian
quadrature, for example. Concerning the order of consistency, the following
relation holds.

Theorem 14 (order of collocation methods)
A Runge-Kutta method resulting from a collocation approach is consistent
of order p if and only if the quadrature formula given by the collocation
points ci and the weights bi is of order p.

Outline of the proof:

Let the quadrature formula be of order p, i.e., it holds

err(g) :=

∣∣∣∣∣
∫ x0+h

x0

g(s) ds− h
s∑

i=1

big(x0 + cih)

∣∣∣∣∣ ≤ Khp+1 max
u∈[0,1]

∣∣∣g(p)(x0 + uh)
∣∣∣

for a function g ∈ Cp with a constant K > 0. For simplicity, we investigate
the scalar case and a smooth function f . The exact solution corresponds to
y′(x) = f(x, y(x)). The polynomial w satisfies

w′(x) = f(x,w(x)) + r(x) with r(x) := w′(x)− f(x,w(x)).

Due to the construction of w, the function r exhibits s zeros. We consider
r as a perturbation of the right-hand side f in the original ODE. Since
y(x0) = w(x0) holds, the Alekseev/Gröbner formula yields

w(x)− y(x) =

∫ x

x0

∂y

∂y0
(x, s, w(s)) · r(s) ds,
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where y(x, x0, y0) denotes the solution of y′ = f(x, y), y(x0) = y0. It follows

|y(x0 + h)− w(x0 + h)| =
∣∣∣∣∫ x0+h

x0

∂y

∂y0
(x0 + h, s, w(s)) · r(s) ds

∣∣∣∣ .
We apply the quadrature rule to this integral. Since r(x0 + cih) = 0 holds
for all i = 1, . . . , s, the quadrature rule yields the approximation zero. It
follows ∣∣∣∣∫ x0+h

x0

∂y

∂y0
(x0 + h, s, w(s)) · r(s) ds

∣∣∣∣ = err(g)

with

g(s) :=
∂y

∂y0
(x0 + h, s, w(s)) · r(s).

We obtain err(g) = O(hp+1) owing to the above assumption. For this con-
clusion, it remains to show that the derivatives g(p) are bounded in a neigh-
bourhood of x0. Due to the construction y1 := w(x0 + h), it follows

|y(x0 + h)− y1| = O(hp+1),

i.e., the consistency of order p is confirmed.

Vice versa, let the Runge-Kutta method be consistent of order p. The
particular ODE-IVP y′(x) = g(x), y(x0) = 0 exhibits the solution

y(x0 + h) =

∫ x0+h

x0

g(s) ds.

The Runge-Kutta scheme yields the increments ki = g(x0 + cih) for each
i = 1, . . . , s and thus the approximation

y1 = h

s∑
i=1

big(x0 + cih).

The consistency of order p implies y(x0 + h)− y1 = O(hp+1). □

The Gaussian quadrature yields the optimal order of consistency p = 2s.
The nodes are the s roots of the Legendre polynomials

Ps : [0, 1] → R, Ps(x) =
ds

dxs [x
s(x− 1)s] .
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The corresponding Gauss-Runge-Kutta methods have already been intro-
duced in Sect. 3.5. These schemes correspond to the Padé-approximations
of index (s, s).

Two types of collocation methods follow from the Radau quadrature for-
mula. The nodes are the roots of the polynomials

RadauI : Ps : [0, 1] → R, Ps(x) =
ds−1

dxs−1

[
xs(x− 1)s−1

]
,

RadauII : Ps : [0, 1] → R, Ps(x) =
ds−1

dxs−1

[
xs−1(x− 1)s

]
.

The weights bi are defined according to (5.8). The choice of the inner
weights aij determines if a collocation method results or not. Four methods
have been constructed:

method collocation A-stable L-stable

RadauI (Butcher 1964) yes no no
RadauIA (Ehle 1968) no yes yes
RadauII (Butcher 1964) no no no
RadauIIA (Ehle 1968) yes yes yes

The resulting order of consistency is p = 2s − 1 in each scheme. The
RadauIA methods have nodes c1 = 0 and cs < 1, whereas the RadauIIA
methods yield nodes 0 < c1 and cs = 1. This property and being a
collocation method make the RadauIIA schemes more advantageous than
RadauIA. The s-stage RadauIA and RadauIIA methods correspond to the
Padé-approximations of index (s, s−1). The RadauIIA method for s = 1 is
just the implicit Euler method. The RadauIIA schemes for s = 2 and s = 3
exhibit the Butcher-tableaus:

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

4−
√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
4+

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√
6

36
16+

√
6

36
1
9

16−
√
6

36
16+

√
6

36
1
9

Another type of collocation methods are the Lobatto schemes.
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Solution of nonlinear systems

We discuss the efficient solution of nonlinear systems resulting from im-
plicit Runge-Kutta methods now. For a single step applied to the nonlinear
system y′ = f(x, y) with y : R→ R

n, the Runge-Kutta method reads

ỹi = y0 + h
s∑

j=1

aijf(xj, ỹj) for i = 1, . . . , s

y1 = y0 + h
s∑

i=1

bif(xi, ỹi)

with xi := x0 + cih. The transformation zi := ỹi − y0 ∈ R
n yields the

equivalent nonlinear system of algebraic equations

zi − h

s∑
j=1

aijf(xj, y0 + zj) = 0 for i = 1, . . . , s.

It holds zi = O(h) and thus the values zi are smaller than the values ỹi,
which reduces the effects of roundoff errors. We use the abbreviations

Z :=

z1...
zs

 , G(Z) :=


z1 − h

s∑
j=1

a1jf(xj, y0 + zj)

...

zs − h

s∑
j=1

asjf(xj, y0 + zj)


.

The nonlinear system G(Z) = 0 with sn equations has to be solved. Each
evaluation of G demands s evaluations of the right-hand side f . We apply
the simplified Newton iteration, cf. Sect. 4.6 in case of multistep methods.
The iteration reads

DG(Z(0))∆Z(ν) = −G(Z(ν)), Z(ν+1) = Z(ν) +∆Z(ν)

for ν = 0, 1, 2, . . . with the Jacobian matrix DG ∈ Rsn×sn of G. A suitable
choice of the starting values is z

(0)
i = 0 for all i. The required Jacobian

matrices of the right-hand side f are

Ji := Df(xi, y0) for i = 1, . . . , s.
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We replace all Jacobian matrices by

J := Df(x0, y0),

which represents just a slight simplification. Thus only one Jacobian matrix
of f has to be evaluated like in an implicit multistep method. The simplified
Jacobian matrix of G becomes

Ĵ := Isn − h

a11J · · · a1sJ
...

...
as1J · · · assJ

 = Isn − h(A⊗ J)

using the notation of Kronecker products. The Newton iteration becomes

(Isn − h(A⊗ J))∆Z(ν) = −G(Z(ν)), Z(ν+1) = Z(ν) +∆Z(ν).

Since Ĵ ∈ R
sn×sn holds, an LU -decomposition demands a computational

work proportional to s3n3.

We can save a significant amount of computational effort by a transforma-
tion. We assume that the coefficient matrix A = (aij) is regular and that A
can be diagonalised. It follows

T−1A−1T = diag(µ1, . . . , µs) =: D

with a regular matrix T ∈ Rs×s. We apply the transformation

W := (T−1 ⊗ In)Z, ∆W := (T−1 ⊗ In)∆Z.

The Newton iteteration reads (with Isn = Is ⊗ In)

((Is ⊗ In)− h(A⊗ J))(T ⊗ In)∆W
(ν) = −G((T ⊗ In)W

(ν))

or, equivalently, due to the product rule (A⊗B)(C ⊗D) = (AC)⊗ (BD)

((T ⊗ In)− h((AT )⊗ J))∆W (ν) = −G((T ⊗ In)W
(ν)).

Multiplication with (T−1A−1)⊗ In from the left produces

((T−1A−1T )⊗ In − h((T−1A−1AT )⊗ J))∆W (ν)

= −((T−1A−1)⊗ In)G((T ⊗ In)W
(ν)).

(5.9)
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Thus the matrix in the left-hand side exhibits a block diagonal structure

(D ⊗ In − h(Is ⊗ J)) =


µ1In − hJ 0

µ2In − hJ
. . .

0 µsIn − hJ

 .

Thus the linear system of order sn is decoupled and just s linear systems
of order n have to be solved. The computational effort for the involved
LU -decompositions is ∼ sn3 in comparison to the effort ∼ s3n3 for an LU -
decompsition of the original matrix. Hence the amount of computational
work is reduced by the factor 1

s2 . Each evaluation of the right-hand side
in (5.9) demands two transformations, which correspond to multiplications
by R ⊗ In with some matrix R ∈ R

s×s. The computational effort of a
matrix-vector multiplication becomes ∼ s2n due to this sparse structure,
which is small in comparison to n3 for large n.

However, often not all eigenvalues of the matrix A are real. Pairs of complex
conjugate eigenvalues may appear. We consider just one pair, for example.
Let µ1 = α + iβ, µ2 = α− iβ. It follows

S−1A−1S =


α −β 0
β α

µ3
. . .

0 µs


with a regular matrix S ∈ Rs×s. Solving the linear system(

αIn − hJ −βIn
βIn αIn − hJ

)(
u
v

)
=

(
a
b

)
(5.10)

demands ∼ (2n)3 = 8n3 operations. Alternatively, we can apply a matrix
T ∈ C

s×s to transform the linear system in block diagonal form. Then
∼ 2n3 complex operations are necessary for the two LU -decompositions of
order n. Since a complex multiplication demands four real multiplications,
the computational work becomes ∼ 8n3 real operations again. We do not
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safe effort, since we have not applied the specific structure of the linear
system (5.10) yet. Alternatively, the complex-valued linear system

((α + iβ)In − hJ)(u+ iv) = a+ ib

yields the solution of (5.10). The computational effort of the LU -decomposi-
tion becomes ∼ n3 complex operations, which corresponds to ∼ 4n3 real
operations. Hence the computational work is just half times the effort of
solving the system (5.10) directly.

The formula of an IRK can be written as a fixed point problem Y = Φ(Y ) with the vector of
unknowns Y := (ỹ1, . . . , ỹs) ∈ Rsn. The function Φ : Rsn → R

sn exhibits the contractivity
condition

∥Φ(Y )− Φ(Z)∥∞ ≤ hLs

(
max

i,j=1,...,s
|aij|

)
∥Y − Z∥∞

with the Lipschitz-constant L from (2.3). We obtain a step size restriction h < C/L for
the convergence of the fixed point iteration. For stiff problems, the constant L is large and
thus tiny step sizes have to be applied. For example, a linear system y′ = Jy implies the
constant L = ∥J∥ in an arbitrary matrix norm. If eigenvalues with a large negative real
part appear, then ∥J∥2 is large (and thus also the other matrix norms).

We motivate that such a step size restriction does not appear in the convergence of Newton
iterations. For example, we consider the implicit Euler method y1 = y0 + hf(x1, y1). The
simplified Newton iteration reads

y
(ν+1)
1 = Ψ(y

(ν)
1 ) := y

(ν)
1 − (I − hJ)−1

(
y
(ν)
1 − y0 − hf(x1, y

(ν)
1 )
)

with the Jacobian matrix J := Df(x0, y0). The Newton method represents a fixed point
iteration with the function Ψ. Hence the iteration converges if ∥DΨ∥ < 1 holds in some
domain. We obtain

DΨ(y) = I − (I − hJ)−1 (I − hDf(x1, y)) .

We decompose f(x, y) = Jy + g(x, y) with g = f − Jy. We assume that the part Jy is
stiff, whereas g is non-stiff. It follows

∥DΨ(y)∥ = ∥I − (I − hJ)−1(I − hJ − hDg(x1, y))∥ = ∥h(I − hJ)−1Dg(x1, y)∥
≤ h · ∥(I − hJ)−1∥ · ∥Dg(x1, y)∥.

If λ is an eigenvalue of J , then λ̂ := 1
1−hλ

is an eigenvalue of (I − hJ)−1. In the stiff case,

small and large eigenvalues λ appear. For large λ, λ̂ will be small. For small λ, λ̂ will be
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around one. Thus we can assume ∥(I − hJ)−1∥ ≤ 1 + c, where the constant c does not
depend on the stiffness of the system. We obtain

∥DΨ(y)∥ < 1 for h <
1

(1 + c)∥Dg∥
.

Thus there is no step size restriction by the stiffness of the system. The matrix (I −hJ)−1

acts like a filter, which is filtering out the stiff part.

Diagonal implicit Runge-Kutta methods

We search for A-stable Runge-Kutta methods with a lower computational
effort now. Since an explicit scheme cannot be A-stable, we still require
implicit Runge-Kutta (IRK) methods. We consider the general form

ỹi = y0 +
s∑

j=1

aijf(xj, ỹj) for i = 1, . . . , s

with xi := x0 + cih. Now let A = (aij) be a lower triangular matrix with
non-zero entries on the diagonal, i.e., aij = 0 for i < j. The corresponding
Butcher-tableau reads:

c1 a11 0 · · · 0
... a21

. . . . . . ...
...

... . . . . . . 0
cs as1 · · · as,s−1 ass

b1 · · · · · · bs

These schemes are called diagonal implicit Runge-Kutta (DIRK) methods.
The formula for the unknown intermediate values ỹi becomes

ỹi − haiif(xi, ỹi) = y0 + h
i−1∑
j=1

aijf(xj, ỹj)

for i = 1, . . . , s. Hence the unknown intermediate values can be computed
successively by solving s nonlinear systems of dimension n. In a Newton
iteration, each nonlinear system can be written as

Gi :≡ ỹi − haiif(xi, ỹi)− y0 − h

i−1∑
j=1

aijf(xj, ỹj) = 0
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for i = 1, . . . , s. The involved Jacobian matrices become

DGi = In − haiiDf(xi, ỹi).

We apply a simplified Newton iteration with the matrices

D̃Gi := In − haiiDf(x0, y0) for i = 1, . . . , s.

Now just one Jacobian matrix of f has to be evaluated in the complete in-
tegration step. Nevertheless, the LU -decompositions of s different matrices
have to be computed. We can save more computational work in case of
singly diagonal implicit Runge-Kutta (SDIRK) methods, which are charac-
terised by the property

γ := a11 = a22 = · · · = ass.

Thus we just need to compute the LU -decomposition of

(L · U) := I − hγDf(x0, y0).

According SDIRK schemes exist, which are A-stable and thus appropriate
for stiff problems. They exhibit a lower computational effort than IRK
methods like Gauss schemes or Radau schemes. However, the maximum
order of an SDIRK method is p ≤ s+ 1.

5.5 Rosenbrock-Wanner methods

Rosenbrock-Wanner (ROW) schemes are implicit integration techniques,
which are similar to Runge-Kutta methods. The aim of Rosenbrock-Wanner
methods is a further reduction of the computational effort in DIRK and
SDIRK method.

In SDIRK methods, several nonlinear systems are resolved successively. The
solution of nonlinear systems will be avoided now by the construction of
according linear systems. For example, just a single step of the Newton
iteration can be done for each nonlinear system in an SDIRK method. The
resulting schemes are called linearly implicit Runge-Kutta methods.
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Construction of ROW methods

The formulation of ROWmethods is based on autonomous systems of ODEs
y′ = f(y). The system can be written in the form

y′(x) = Jy(x) + (f(y(x))− Jy(x)) (5.11)

using the (constant) Jacobian matrix J := Df(y0). The first term Jy (stiff
part) is discretised by a diagonal implicit Runge-Kutta method, whereas the
second term f(y)−Jy (nonstiff part) is resolved by an explicit Runge-Kutta
method. Based on the notation (3.14), we obtain

ki = J

(
h

i∑
j=1

aijkj

)
+ f

(
y0 + h

i−1∑
j=1

αijkj

)
− J

(
h

i−1∑
j=1

αijkj

)
and thus

(I − haiiJ)ki = f

(
y0 + h

i−1∑
j=1

αijkj

)
+ hJ

i−1∑
j=1

(aij − αij)kj

for i = 1, . . . , s. We have achieved a linear system for each unknown incre-
ment ki. We set γ = aii for all i using some parameter γ ∈ R and define
γij = aij − αij. Now the Rosenbrock-Wanner method reads

(I − hγJ)ki = f

(
y0 + h

i−1∑
j=1

αijkj

)
+ hJ

i−1∑
j=1

γijkj, i = 1, . . . , s ,

y1 = y0 + h
s∑

i=1

biki.

(5.12)

The Rosenbrock-Wanner scheme is determined by its coefficients (αij), (γij)
and γ. The matrix in the linear systems is the same for all i. Hence just a
single LU -decomposition has to be computed in each step of the integration.

A non-autonomous system y′(x) = f(x, y(x)) can be written in the au-
tonomous form

ỹ′(τ) =

(
y′(τ)
x′(τ)

)
=

(
f(x(τ), y(τ))

1

)
= f̃(ỹ(τ)).
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Application of the ROW scheme yields

(I − hγJ̃)k̃i =

f
(
x0 + h

i−1∑
j=1

αij · 1, y0 + h

i−1∑
j=1

αijkj

)
1

+ hJ̃
i−1∑
j=1

γijk̃j

with the Jacobian matrix

J̃ =

(
Dyf Dxf
0 0

)
, Dyf :=

∂f

∂y
(x0, y0), Dxf :=

∂f

∂x
(x0, y0).

The last equation implies that the (n + 1)th component of k̃i is equal to
one. It follows

(I − hγDyf)ki = f

(
x0 + αih, y0 + h

i−1∑
j=1

αijkj

)
+ hγiDxf + hDyf

i−1∑
j=1

γijkj

with the coefficients

αi :=
i−1∑
j=1

αij, γi := γ +
i−1∑
j=1

γij for i = 1, . . . , s.

In comparison to SDIRK methods, we do not have to solve several linear
systems in each Newton iteration, where the computational effort is ∼ n2 for
each linear system (since the LU -decomposition is already given). Moreover,
just s evaluations of the right-hand side f are required in each integration
step. However, the ROW method (5.12) includes a matrix-vector product
on the right-hand side with computational work ∼ n2. The computation of
this product can be omitted by a combination with the linear system.

It remains to investigate this class of methods with respect to consistency
and A-stability.

Order conditions

As in the case of general Runge-Kutta methods, cf. Sect. 3.5, Taylor expan-
sion can be used to determine the order of consistency for ROW methods.
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The coefficients, which define the ROW scheme, have to satisfy certain or-
der conditions. Remark that αij = 0 for j ≥ i, γij = 0 for j > i and γii = γ.
The conditions up to order 3 read:

p = 1 :
s∑

i=1

bi = 1

p = 2 :
s∑

i,j=1

bi(αij + γij) = 1
2

p = 3 :
s∑

i,j,k=1

biαijαik = 1
3

s∑
i,j,k=1

bi(αij + γij)(αjk + γjk) = 1
6

If we replace aij = αij + γij, then the order conditions coincide with the
conditions of the corresponding SDIRK method. ROW methods of each
order p can be constructed by choosing a sufficiently large stage number s.

A-stability

The construction of the ROW method (5.12) is based on the decomposi-
tion (5.11) in a linear and a nonlinear part. It follows that the ROWmethod
reduces to the underlying SDIRK method with coefficients aij = αij + γij
in case of linear systems f(y) = Jy. Since Dahlquist’s test equation (5.4)
is linear, the stability function of the ROW method coincides with the sta-
bility function of the SDIRK method. We use the formula (5.7) with the
matrix A = (aij) and the stability function of the ROW method becomes

R(z) = 1 + zb⊤(I − zA)−1
1.

The maximal order of consistency of an SDIRK method is p = s + 1. If
we demand that the SDIRK method has the order p = s, then the stability
function R(z) depends on the parameter γ only. A-stability implies a con-
dition 0 < γmin ≤ γ ≤ γmax for this parameter. L-stability yields a further
condition for γ.
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Example

The first implementations of ROW schemes, GRK4A and GRK4T (Gen-
eralised Runge-Kutta), are due to Kaps and Rentrop (1979). The ROW
method of Shampine and Reichelt (1996) with s = 2 stages is defined by
the coefficients

γ = 1
2+

√
2
, α21 =

1
2 , γ21 = −γ, b1 = 0, b2 = 1.

The order of consistency is p = 2. For step size control, see Sect. 3.7, an
additional stage is evaluated via

(I − hγJ)k3 = f(x1, y1)− (6 +
√
2)(k2 − f(x0 + α21h, y0 + hα21k1))

− 2(k1 − f(x0, y0)) + hγDxf(x0, y0).

Thereby, an FSAL (first same as last) strategy can be applied as in Runge-
Kutta-Fehlberg methods. The local error is estimated by

ŷ1 − y1 = h1
6(k1 − 2k2 + k3).

Both approximations y1 and ŷ1 are A-stable. However ŷ1 is not L-stable,
whereas y1 is L-stable. Hence the lower-order approximation y1 is used as
the output of the method.

5.6 A-stability for multistep methods

Now we investigate linear multistep methods (4.6) with respect to stiff prob-
lems. The multistep method is (numerically) stable, if its characteristic
polynomial satisfies the root condition.

We apply a linear k-step method (4.6) to Dahlquist’s test equation (5.4). It
follows a homogeneous linear difference equation

k∑
l=0

αlyi+l = h

k∑
l=0

βlλyi+l ⇒
k∑

l=0

(αl − hλβl) yi+l = 0.

With z := hλ, we define the characteristic polynomials

qz : C→ C, qz(ξ) =
k∑

l=0

(αl − zβl)ξ
l.
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Due to Theorem 8, all solutions of the linear difference equation are bounded
if and only if the polynomial satisfies the root condition. The roots ξ1, . . . , ξk
of qz depend on z.

We consider Re(λ) ≤ 0 in Dahlquist’s equation (5.4). It follows that the ex-
act solutions do not increase. In particular, the exact solutions are bounded.
The numerical solution of a multistep method may increase slightly. Thus
we just demand that the numerical solution is bounded. The root condition
leads to the following definition.

Definition 14 (stability domain of multistep methods)
The stability domain S ⊂ C of a linear multistep method is

S := {z ∈ C : all roots of qz fulfill |ξl| ≤ 1 and |ξl| < 1 for multiple roots} .

Now we characterise A-stability for multistep methods like for one-step
schemes.

Definition 15 (A-stability of multistep methods) A linear multistep
method is called A-stable if its stability domain satisfies C− ⊆ S.

We show that this definition coincides with the A-stability of one-step methods in the
intersection of both classes of methods. A linear multistep method with k = 1 steps reads

α1y1 + α0y0 = h [β1f(x1, y1) + β0f(x0, y0)] .

On the one hand, the linear polynomial

qz(ξ) = (α1 − zβ1)ξ + (α0 − zβ0)

has just the single root

ξ1(z) =
−α0 + zβ0
α1 − zβ1

.

On the other hand, the application to Dahlquist’s test equation yields

α1y1 + α0y0 = h [β1λy1 + β0λy0] ⇒ y1 =
−α0 + zβ0
α1 − zβ1

y0.

It follows that the stability function R(z) of this one-step method coincides with the

root ξ1(z) of the polynomial. Consequently, the conditions of A-stability |R(z)| ≤ 1 and

|ξ1(z)| ≤ 1 for all z with Re(z) ≤ 0 are equivalent.
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Nevertheless, the concept of A-stability for multistep methods is slightly
weaker than the definition of A-stability for one-step methods in case of
k > 1 steps. The specific case z = 0 corresponds to the numerical stability
of the multistep methods, cf. Sect. 4.3.

Again explicit multistep methods are not appropriate for stiff problems.

Theorem 15 A convergent explicit linear multistep method is not A-stable.

Proof:

An explicit linear multistep method (4.6) has the property βk = 0. Without
loss of generality, we assume αk = 1. The characteristic polynomial from
the application to Dahlquist’s test equation (5.4) reads

qz(ξ) = ξk + (αk−1 − zβk−1)ξ
k−1 + · · ·+ (α1 − zβ1)ξ + (α0 − zβ0).

The polynomial can be written in the form

qz(ξ) = (ξ − ξ1(z))(ξ − ξ2(z)) · · · (ξ − ξk(z))

with the roots ξ1, . . . , ξk ∈ C depending on z. Since the method is conver-
gent, at least one coefficient βl ̸= 0 appears. It follows

|αl − zβl|
|z|→∞−→ ∞.

Thus one coefficient of qz becomes unbounded. Vieta’s theorem implies that
at least one root ξj(z) must be unbounded in this case. Consequently, this
root violates the condition in the Definition 14 of the stability domain S for
Re(z) → −∞. Hence it does not hold C− ⊆ S. □

In case of an implicit linear multistep method, it holds βk ̸= 0 and the
characteristic polynomial becomes

qz(ξ) = (αk − zβk)ξ
k + (αk−1 − zβk−1)ξ

k−1 + · · ·+ (α1 − zβ1)ξ + (α0 − zβ0).

The roots of this polynomial are the same as for

q̃z(ξ) = ξk +
αk−1 − zβk−1

αk − zβk
ξk−1 + · · ·+ α1 − zβ1

αk − zβk
ξ +

α0 − zβ0
αk − zβk
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Figure 19: Domain Cα for A(α)-stability.

provided that αk − zβk ̸= 0. Now the coefficients are rational functions in
the variable z. The coefficient are bounded for |z| → ∞. A-stable multistep
methods are a subset of the implicit schemes. However, concerning A-stabi-
lity of implicit multistep methods, a significant restriction appears.

Theorem 16 (second Dahlquist barrier) A linear multistep method,
which is convergent of order p > 2, cannot be A-stable.

For a multistep method with k steps, we like to have an order of convergence
p ≥ k (for example: Adams methods, BDF methods). Hence we do not
achieve A-stable methods with k > 2 steps and order p ≥ k.

The BDF methods for k = 1 and k = 2 are A-stable, whereas BDF schemes
for k ≥ 3 are not A-stable. Nevertheless, the BDF methods exhibit a good
performance in solving stiff problems. The form of their stability domains
suggests a modification of the concept of A-stability. For 0 ≤ α ≤ π

2 , we
define the domain

Cα :=
{
z = |z| · eiφ ∈ C : |π − φ| ≤ α

}
.

Fig. 19 illustrates this domain.
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Definition 16 (A(α)-stability) A (one-step or multistep) method is
called A(α)-stable if its stability domain S satisfies Cα ⊆ S.

Of course, we characterise a method by the largest α, which still implies
A(α)-stability. The specific case α = π

2 corresponds to the ordinary A-
stability due to Cπ/2 = C

−. If α is close to π
2 , then the method is also

suitable for stiff linear problems.

The k-step BDF methods feature the following maximum angles:

k 1 2 3 4 5 6

α 90◦ 90◦ 86.03◦ 73.35◦ 51.84◦ 17.84◦

The BDF methods for k ≥ 7 are not A(α)-stable for any angle α ≥ 0.

5.7 B-stability

The concept of A-stability concerns stiff linear systems of ODEs. Now we
consider the nonlinear case. We investigate systems of ODEs y′ = f(x, y). If
the Jacobian matrix Df exhibits large negative eigenvalues, then the system
often behaves stiff. However, the solutions of a nonlinear system can exhibit
a stiff behaviour, although the eigenvalues of the Jacobian matrix are all
small. Thus another characterisation is necessary.

We assume that the system of ODEs satisfies the one-sided Lipschitz con-
dition

⟨f(x, y)− f(x, z), y − z⟩ ≤ ν∥y − z∥2 (5.13)

with the constant ν ∈ R and the Euclidean norm. It follows that corre-
sponding solutions of initial value problems exhibit the contractivity prop-
erty

∥y(x)− z(x)∥ ≤ ∥y(x0)− z(x0)∥ · eν(x−x0).

If ν ≤ 0 holds, then the system is called dissipative. In this case, it follows

∥y(x)− z(x)∥ ≤ ∥y(x0)− z(x0)∥. (5.14)

The system exhibits a stiff behaviour for large negative ν.
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In case of a linear system with f(x, y) = Ay, the condition (5.13) is equiv-
alent to

⟨Av, v⟩
⟨v, v⟩

≤ ν for all v ∈ Rn\{0}.

If the matrix A is symmetric, it follows

ν = max
v ̸=0

v⊤Av

v⊤v
= λmax(A).

If all eigenvalues are non-positive, then the linear system is dissipative.

The concept of B-stability demands that a numerical solution of a method
inherits the property (5.14) of the exact solution without a step size restric-
tion in case of dissipative systems.

Definition 17 (B-stability) A one-step method is called B-stable if for all
step sizes h > 0 and two initial values y0, z0 the approximation satisfies

∥y1 − z1∥ ≤ ∥y0 − z0∥

for all systems with ⟨f(x, y)− f(x, z), y − z⟩ ≤ 0.

A B-stable method is also A-stable: For y′ = λy with λ ∈ R, λ ≤ 0, a
B-stable one-step method implies

|R(hλ)| · |y0 − z0| = |R(hλ)(y0 − z0)| = |y1 − z1| ≤ |y0 − z0|

and thus |R(hλ)| ≤ 1. In case of λ = α + iβ with α ≤ 0, we apply the
real-valued system of ODEs

u′ = Au with u =

(
u1
u2

)
, A =

(
α −β
β α

)
,

which is dissipative due to u⊤Au = α(u21 + u22) ≤ 0. The conclusion follows
from u1 = Re(y) and u2 = Im(y) for the solution of Dahlquist’s equation,
since ∥u∥ = |y| holds.

Vice versa, an A-stable method is not necessarily B-stable. For example,
linear implicit one-step methods (e.g. ROW methods) are never B-stable.
B-stability can be found in the class of implicit Runge-Kutta methods only.
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Theorem 17 The Gauss-Runge-Kutta methods are B-stable.

Proof:

Let w and w̃ be the polynomials of the collocation approach with initial
values y0 and z0, respectively. We define m(x) := ∥w(x)− w̃(x)∥2. It holds

m′(x) = 2⟨w′(x)− w̃′(x), w(x)− w̃(x)⟩

and thus in the collocation points xi := x0 + cih

m′(xi) = 2⟨f(xi, w′(xi))− f(xi, w̃
′(xi)), w(xi)− w̃(xi)⟩ ≤ 0

for i = 1, . . . , s. It follows

m(x0 + h) = m(x0) +

∫ x0+h

x0

m′(x) dx

= m(x0) + h

s∑
i=1

bim
′(xi) ≤ m(x0),

because the weights bi are positive and m
′ is a polynomial of degree 2s− 1,

which is approximated exactly by Gaussian quadrature. We obtain

∥y1 − z1∥2 = m(x0 + h) ≤ m(x0) = ∥y0 − z0∥2

and thus B-stability is valid. □

Moreover, the RadauIA and RadauIIA methods are B-stable.

For multistep methods, the concept of G-stability is defined. However, no
linear multistep method of order p > 2 exists, which is G-stable.

Remark: The concept of B-stability is based on dissipative systems as test
problems. However, not all dissipative systems behave stiff and not all stiff
ODEs are dissipative.
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5.8 Comparison of methods

In this section, we discuss the general properties of one-step methods in
comparison to multistep methods. Each type has its own advantages and
disadvantages.

First, we characterise the computational effort per integration step in the
next table.

Runge-Kutta method linear multistep method
s stages k steps

expl. s evaluations of f one evaluation of f

impl. one Jacobian matrix of f one Jacobian matrix of f
LU -decomp.: > sn3 operations LU -decomp.: ∼ n3 operations
(∼ n3 op. for SDIRK, ROW)

per Newton step: per Newton step:
s evaluations of f one evaluation of f
s linear systems of dim. n one linear system of dim. n

In conclusion, one step of a Runge-Kutta methods is more expensive than
one step of a multistep scheme. However, the accuracy of the methods has
also to be considered.
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The following table illustrates some advantages and disadvantages of the
one-step methods versus the multistep methods.

Runge-Kutta method linear multistep method

⊖ relatively large computational effort ⊕ relatively small computational effort
per step (depending on s) per step (independent of k)

⊕ many coefficients (s2 + s) ⊖ just 2k + 1 coefficients
(additional conditions can be fulfilled) (low number of degrees of freedom)

⊕ always (numerically) stable ⊖ root condition required for stability
(no reduction of degrees of freedom) (reduces the degrees of freedom,

first Dahlquist barrier)
⊕ high-order methods for stiff problems ⊖ only low-order methods are A-stable

(A-stability and B-stability) (second Dahlquist barrier),
only A(α)-stable high-order methods

⊕ robust step size selection ⊖ stability condition demands small
changes in step sizes
(for example in BDF methods)

⊖ no (efficient) order control ⊕ efficient order control
(straightforward to implement)

We cannot conclude that one-step schemes or multistep methods are better
in general. It always depends on the system of ODEs, which is resolved, if
some method is better than another technique.

Integrators in MATLAB

In the software package MATLAB (MATrix LABoratory), version 7.5.0
(R2007b), there are seven built-in functions for solving initial value prob-
lems of systems of ODEs y′ = f(x, y), y(x0) = y0. The following table lists
these algorithms. The type of the used method is specified. All involved
methods have been introduced in the previous chapters. The schemes apply
an automatic step size selection to control the local discretisation error. The
table indicates the used strategy for estimating the local error. Furthermore,
two methods apply order control.
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code method step size control order control

ode23 explicit Runge-Kutta embedded scheme no

ode45 explicit Runge-Kutta embedded scheme no

ode113 predictor-corrector free interpolants yes
Adams methods order 1-13

ode23t trapezoidal rule free interpolants no

ode23s Rosenbrock-Wanner embedded scheme no

ode15s NDF method free interpolants yes
optional: BDF order 1-5

ode23tb trapezoidal rule and free interpolants no
BDF2 (alternating)

The table below gives an information, which methods can be used for stiff
problems. Moreover, two algorithms can also solve differential algebraic
equations (DAEs) of index 1. (Remark that most of the implicit schemes
can be generalised to DAEs of index 1 or 2.)

code problem type DAEs (index 1)

ode23 non-stiff no

ode45 non-stiff no

ode113 non-stiff no

ode23t moderately stiff yes

ode23s stiff no

ode15s stiff yes

ode23tb stiff no

All methods are able to integrate implicit systems of ODEs, i.e., problems
of the formMy′ = f(x, y) with a constant mass matrixM and det(M) ̸= 0.
Furthermore, there is the algorithm ode15i, which resolves fully implicit
systems of ODEs or DAEs. Numerical methods for implicit systems of
ODEs and systems of DAEs are discussed in the next chapter.

More details on some of the above integrators in MATLAB can be found
in the article: L.F. Shampine, M.W. Reichelt: The MATLAB ODE suite.
SIAM Journal on Scientific Computing 18 (1997) 1, pp. 1-22.
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Chapter 6

Methods for Differential Algebraic Equations

6

We consider initial values problems of systems of differential algebraic equa-
tions (DAEs), i.e., a mixture of ordinary differential equations and algebraic
equations. Such mathematical models are typically large in technical appli-
cations.

6.1 Implicit ODEs

We observe implicit systems of ordinary differential equations, since they
represent a first step towards differential algebraic equations. Consider the
initial value problem

My′(x) = f(x, y(x)), y(x0) = y0 (6.1)

with unknown solution y : R→ R
n and right-hand side f : R×Rn → R

n.
Let M ∈ Rn×n be a constant matrix with M ̸= I. Often M is called the
mass matrix. If M is the identity matrix, then the system (6.1) represents
explicit ODEs. We distinguish two cases:

M regular: (6.1) is a system of implicit ordinary differential equations,

M singular: (6.1) is a system of differential algebraic equations.
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In this section, we assume the case of implicit ODEs. Consequently, we can
transform the system (6.1) into the explicit system

y′(x) =M−1f(x, y(x)). (6.2)

Each evaluation of the new right-hand side demands the solution of a linear
system with the matrix M now. For example, the explicit Euler method
yields the formula

y1 = y0 + hM−1f(x0, y0).

Thus a linear system with matrix M has to be solved in each step of the
integration. A corresponding LU -decomposition has to be calculated just
once. Using an explicit Runge-Kutta method, we obtain a sequence of linear
systems, which have to be solved for each increment, i.e.,

Mki = f

(
x0 + cih, y0 + h

i−1∑
j=1

aijkj

)
for i = 1, . . . , s.

However, implicit ODEs are often stiff. Hence implicit methods have to be
used. For example, the implicit Euler method applied to the system (6.2)
yields the nonlinear system

y1 = y0 + hM−1f(x1, y1)

for the unknown value y1. Considering the nonlinear system

y1 − hM−1f(x1, y1)− y0 = 0,

the corresponding simplified Newton iteration reads

(I − hM−1Df(x1, y
(0)
1 ))∆y

(ν)
1 = −y(ν)1 + hM−1f(x1, y

(ν)
1 ) + y0,

y
(ν+1)
1 = y

(ν)
1 +∆y

(ν)
1 ,

where Df = ∂f
∂y denotes the Jacobian matrix of f . We multiply the equation

of the Newton iteration with M and achieve the equivalent formulation

(M − hDf(x1, y
(0)
1 ))∆y

(ν)
1 =M(y0 − y

(ν)
1 ) + hf(x1, y

(ν)
1 ). (6.3)
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Thus one linear system has to be solved for both explicit and implicit ODEs
in each step of the iteration. Just an additional matrix-vector multiplication
is necessary on the right-hand side of (6.3).

Likewise, an implicit Runge-Kutta method applied to (6.1) or (6.2) exhibits
the relations

Mki = f

(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
for i = 1, . . . , s. (6.4)

Given a nonlinear function f , a nonlinear system of sn equations for the
unknown increments has to be solved as for explicit ODEs.

Hence the computational effort for implicit ODEs is not significantly higher
than for explicit ODEs in case of implicit methods. The situation becomes
more complicated, if the matrix M is not constant but depends on the
independent variable or the unknown solution.

We distinguish the following cases (with increasing complexity):

• linear-implicit system of ODEs with constant mass matrix:
My′(x) = f(x, y(x))

• linear-implicit system of ODEs with non-constant mass matrix:
M(x)y′(x) = f(x, y(x))

• quasilinear implicit system of ODEs:
M(y(x))y′(x) = f(x, y(x)) or M(x, y(x))y′(x) = f(x, y(x))

• fully implicit system of ODEs:
F (y′(x), y(x), x) = 0,
F : Rn ×Rn ×R→ R

n, (z, y, x) 7→ F (z, y, x), det
(
∂F
∂z

)
̸= 0

For an example of an implicit system of ODEs, see the Colpitts oscillator
introduced in Sect. 1.2. The involved mass matrix is constant and regular.
The system of ODEs exhibits a strongly stiff behaviour.
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6.2 Linear DAEs

In this section, we consider linear systems of differential algebraic equations

Ay′(x) +By(x) = s(x), y(x0) = y0 (6.5)

with unknown solution y : R→ R
n and given input signal s : R→ R

n. We
assume that the matrices A,B ∈ Rn×n are constant. For det(A) ̸= 0, we
obtain implicit ODEs, whereas det(A) = 0 implies DAEs.

For simplicity, we assume det(B) ̸= 0 in the following. Stationary solutions
of the DAEs (6.5) with some constant input s ≡ s0 are characterised by
y′ ≡ 0. Hence a unique stationary solution is given by y0 = B−1s0 in case
of det(B) ̸= 0. We transform the system (6.5) to the equivalent system

B−1Ay′(x) + y(x) = B−1s(x). (6.6)

We use B−1A = T−1JT with the Jordan form J and the regular transfor-
mation matrix T ∈ Rn×n. Thus the system (6.6) is transformed to

TB−1Ay′(x) + Ty(x) = TB−1s(x)

TB−1AT−1Ty′(x) + Ty(x) = TB−1s(x)

J(Ty(x))′ + Ty(x) = TB−1s(x).

(6.7)

The Jordan matrix J can be ordered such that it exhibits the form

J =

(
R 0
0 N

)
,

R ∈ Rn1×n1,
N ∈ Rn2×n2,

n1 + n2 = n, (6.8)

where R contains all eigenvalues not equal to zero (det(R) ̸= 0) and N
includes the eigenvalues equal to zero (det(N) = 0). More precisely, N is a
stricly upper triangular matrix. Hence N is nilpotent, i.e.,

Nk−1 ̸= 0, Nk = 0 for some k ≤ n2. (6.9)

We call k the nilpotency index of the linear DAE system (6.5). Since
det(A) = 0 holds, it follows n2 ≥ 1 and k ≥ 1. The corresponding par-
titioning of the solution and the right-hand side reads

Ty =

(
u
v

)
, TB−1s =

(
p
q

)
(6.10)
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with u, p : R → R
n1 and v, q : R → R

n2. Hence the system (6.5) is
decoupled in two parts

Ru′(x) + u(x) = p(x),

Nv′(x) + v(x) = q(x).
(6.11)

Since det(R) ̸= 0 holds, the first part represents an implicit ODE for the
part u, which is equivalent to the linear explicit ODE

u′(x) = −R−1u(x) +R−1p(x).

The second part can be written as

v(x) = q(x)−Nv′(x),

v(l)(x) = q(l)(x)−Nv(l+1)(x).

We obtain successively together with Nk = 0

v(x) = q(x)−Nv′(x),

= q(x)−Nq′(x) +N 2v′′(x)

= q(x)−Nq′(x) +N 2q′′(x)−N 3v(3)(x)

= · · ·
= q(x)−Nq′(x) +N 2q′′(x)− · · ·+ (−1)kNkv(k+1)(x)

=
k−1∑
i=0

(−1)iN iq(i)(x).

(6.12)

Thus we achieve an algebraic relation for the part v depending on the higher
derivatives of the input. The special case N = 0 yields v(x) = q(x). We
call u and v the differential and algebraic part, respectively. In particular,
the initial value of the algebraic part follows from the input via

v(x0) =
k−1∑
i=0

(−1)iN iq(i)(x0). (6.13)

In contrast, the initial value u(x0) ∈ R
n1 of the differential part can be

chosen arbitrarily.
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Differentiating the relation (6.12) one more time yields

v′(x) =
k−1∑
i=0

(−1)iN iq(i+1)(x). (6.14)

Hence by differentiating the system (6.5) k times, we obtain a system of
ODEs for the part v.

If the source term includes a perturbation, i.e., the right-hand side changes
into ŝ(x) = s(x) + δ(x), then the algebraic part reads

v̂(x) =
k−1∑
i=0

(−1)iN iq(i)(x) +
k−1∑
i=0

(−1)iN iδ̃(i)(x)

with transformed perturbations δ̃ : R→ R
n2 due to (6.10). Thus also higher

derivates of the perturbation influence the solution of the linear DAE system
in case of k > 1.

Conclusions:

• To guarantee the existence of solutions of the linear DAEs (6.5), the
right-hand side s has to be sufficiently smooth, namely s ∈ Ck−1. The
algebraic part v may be just continuous and not smooth.

• Derivatives of perturbations in the right-hand side influence the solu-
tion of a perturbed system in case of nilpotency index k ≥ 2.

• The initial values y(x0) = y0 of the system (6.5) cannot be chosen
arbitrarily. A consistent choice is necessary regarding (6.13).

If the matrix B is singular, existence and uniqueness of solutions can still be obtained in
case of a regular matrix pencil, i.e., det(λA+B) ̸≡ 0 holds. Take a fixed λ ∈ R such that
det(λA+B) ̸= 0. Now we transform the system (6.5) into

A(y′(x)− λy(x)) + (λA+B)y(x) = s(x),

(λA+B)−1A(y′(x)− λy(x)) + y(x) = (λA+B)−1s(x).
(6.15)
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We use the Jordan form (λA+B)−1A = T−1JT with the structure (6.8). The transforma-
tion is analogue to (6.10). Consequently, the DAE system (6.5) is decoupled into the two
parts

R(u′(x)− λu(x)) + u(x) = p(x),

N(v′(x)− λv(x)) + v(x) = q(x).
(6.16)

The first part is equivalent to an explicit system of ODEs again. The second part can be
written in the form

v(x) = (I − λN)−1q(x)− (I − λN)−1Nv′(x) = q̃(x)− Ñv′(x)

with q̃ := (I − λN)−1q and Ñ := (I − λN)−1N . We arrange a von Neumann series to
represent the inverse matrix

(I − λN)−1 =
∞∑
j=0

λjN j =
k−1∑
j=0

λjN j,

since N j = 0 holds for all j ≥ k. It follows

Ñ = (I − λN)−1N =
k−2∑
j=0

λjN j+1

and thus Ñk−1 ̸= 0, Ñk = 0 with the same k as in (6.9). Accordingly, we obtain the same
results as in the case det(B) ̸= 0. However, we have not shown that the definition of the
index k is unique in this case, i.e., k is independent of the choice of λ.

If det(λA + B) ≡ 0 holds, then either existence or uniqueness of solutions to the linear
DAE system (6.5) is violated.

6.3 Index Concepts

The index of a system of DAEs represents an integer number, which char-
acterises the qualitative differences of the DAE system in comparison to a
system of ODEs. We distinguish the two cases

index k = 0 : system of ODEs,

index k ≥ 1 : system of DAEs.

The higher the index, the more the system of DAEs behaves different form
a system of ODEs.
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Several concepts for defining the index exist. We discuss two important
approaches, namely the differential index and the perturbation index.

To define the index, we consider a general nonlinear system of differential
algebraic equations

F (y′(x), y(x), x) = 0, y(x0) = y0 (6.17)

with unknown solution y : R → R
n and F : Rn × R

n × R → R
n. The

predetermined initial values have to be consistent.

Differential Index

The system (6.17) represents ordinary differential equations, if the Jacobian
matrix ∂F

∂y′ is regular. We consider the extended system

F (y′(x), y(x), x) = 0

d

dx
F (y′(x), y(x), x) = 0

d2

dx2
F (y′(x), y(x), x) = 0

...

dk

dxk
F (y′(x), y(x), x) = 0

(6.18)

with (k + 1)n equations, which is achieved by a subsequent differentiation.
In most cases, an explicit system of ODEs for the unknown solution in the
form

y′(x) = G(y(x), x)

can be constructed from a larger system (6.18) by algebraic manipulations.

Definition 18 The differential index of the system of DAEs (6.17) is the
smallest integer k ≥ 0 such that an explicit system of ODEs for the so-
lution y can be constructed by algebraic manipulations using the extended
system (6.18)
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The special case k = 0 implies that the system (6.17) is equivalent to an
explicit system of ODEs, i.e., it is not a DAE.

As example, we discuss a semi-explicit system of DAEs

y′(x) = f(y(x), z(x)), y : R→ R
n1, f : Rn1 ×Rn2 → R

n1,

0 = g(y(x), z(x)), z : R→ R
n2, g : Rn1 ×Rn2 → R

n2.
(6.19)

The differential index of this system is always k ≥ 1 provided that n2 > 0.
Differentiating the second part of the system yields

0 =
∂g

∂y
· y′(x) + ∂g

∂z
· z′(x) = ∂g

∂y
· f(y(x), z(x)) + ∂g

∂z
· z′(x).

If the Jacobian matrix ∂g
∂z ∈ Rn2×n2 is regular, then we obtain

z′(x) = −
(
∂g

∂z

)−1

· ∂g
∂y

· f(y(x), z(x)).

Thus we achieve an explicit ODE for the solution y, z and the differential
index results to k = 1. If the Jacobian matrix ∂g

∂z is singular, then the
differential index satisfies k ≥ 2 and further examinations are necessary.

This example indicates that the differential index possibly does not depend
on the underlying system of DAEs only but also on the considered solution.
Thus the same system may exhibit two different solutions with according
indexes.

Perturbation Index

We observe a system of ODEs and a corresponding perturbed system

y′(x) = f(x, y(x)), y(x0) = y0,

ŷ′(x) = f(x, ŷ(x)) + δ(x), ŷ(x0) = ŷ0.
(6.20)

Let the function f be Lipschitz-continuous. We perform a similar analysis
as in Sect. 2.3. However, we do not apply Gronwall’s lemma now. The
equivalent integral equations of (6.20) read

y(x) = y0 +

∫ x

x0

f(s, y(s)) ds, ŷ(x) = ŷ0 +

∫ x

x0

f(s, ŷ(s)) + δ(s) ds.
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We consider an interval I := [x0, xend]. Let R := xend − x0. Subtracting the
integral equations yields the estimate in the maximum norm

∥ŷ(x)− y(x)∥ =

∥∥∥∥ŷ0 − y0 +

∫ x

x0

f(s, ŷ(s))− f(s, y(s)) + δ(s) ds

∥∥∥∥
≤ ∥ŷ0 − y0∥+

∫ x

x0

∥f(s, ŷ(s))− f(s, y(s))∥ ds+

∥∥∥∥∫ x

x0

δ(s) ds

∥∥∥∥
≤ ∥ŷ0 − y0∥+ L

∫ x

x0

∥ŷ(s)− y(s)∥ ds+

∥∥∥∥∫ x

x0

δ(s) ds

∥∥∥∥
≤ ∥ŷ0 − y0∥+ L(x− x0)max

s∈I
∥ŷ(s)− y(s)∥+

∥∥∥∥∫ x

x0

δ(s) ds

∥∥∥∥
≤ ∥ŷ0 − y0∥+ LRmax

s∈I
∥ŷ(s)− y(s)∥+max

s∈I

∥∥∥∥∫ s

x0

δ(u) du

∥∥∥∥
for all x ∈ I. Taking the maximum over all x ∈ I on the left-hand side
yields (provided that LR < 1)

max
x∈I

∥ŷ(x)− y(x)∥ ≤ 1

1− LR

(
∥ŷ0 − y0∥+max

s∈I

∥∥∥∥∫ s

x0

δ(u) du

∥∥∥∥) .
Hence just the difference in the initial values and the integral of the pertur-
bation give a contribution to the discrepancy of the two solutions. Further-
more, it holds the estimate

max
x∈I

∥ŷ(x)− y(x)∥ ≤ 1

1− LR

(
∥ŷ0 − y0∥+Rmax

s∈I
∥δ(s)∥

)
.

Given a general nonlinear system of DAEs (6.17) and a corresponding so-
lution y on I := [x0, xend], we consider the perturbed system

F (ŷ′(x), ŷ(x), x) = δ(x), ŷ(x0) = ŷ0 (6.21)

with sufficiently smooth perturbation δ : I → R
n.
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Definition 19 The perturbation index of the system (6.17) corresponding
to the solution y on an interval I is the smallest integer k ≥ 1 such that an
estimate

∥ŷ(x)− y(x)∥ ≤ C

(
∥ŷ0 − y0∥+

k−1∑
l=0

max
s∈I

∥δ(l)(s)∥

)
exists with a constant C > 0 for sufficiently small right-hand side. The
perturbation index is k = 0 if an estimate of the form

∥ŷ(x)− y(x)∥ ≤ C

(
∥ŷ0 − y0∥+max

s∈I

∥∥∥∥∫ s

x0

δ(u) du

∥∥∥∥)
holds.

It can be shown that the perturbation index is k = 0 if and only if the
system (6.17) represents explicit or implicit ODEs.

Remark that a perturbation can be small itself but exhibit large derivatives.
For example, we discuss the function

δ(x) = ε sin(ωx),

δ′(x) = εω cos(ωx).

It holds |δ(x)| ≤ ε for arbitrary ω ∈ R. However, we obtain |δ′(x)| ≤ εω,
which becomes large in case of ω ≫ 1 even if ε > 0 is tiny.

In view of this property, the numerical simulation of DAE models becomes
critical in case of perturbation index k ≥ 2, since derivatives of perturba-
tions are involved. DAE systems of index k = 1 are well-posed, whereas
DAE systems of index k ≥ 2 are (strictly speaking) ill-posed. The higher
the perturbation index becomes, the more critical is this situation. How-
ever, modelling electric circuits can be done by DAEs with index k ≤ 2.
The models of mechanical systems exhibit DAEs with index k ≤ 3. In prac-
tice, mathematical models based on DAE systems with perturbation index
k > 3 are avoided.

From the numerical point of view, the perturbation index is more interesting
than the differential index, since it characterises the expected problems in
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numerical methods. The result of a numerical technique can be seen as the
exact solution of a perturbed system of DAEs (backward analysis). It is
often difficult to determine the perturbation index of a system of DAEs,
whereas the differential index is easier to examine.

For linear systems (6.5), the differential index and the perturbation index
coincide and are equal to the nilpotency index. For a general nonlinear
system (6.17), the two index concepts can differ arbitrarily. However, the
differential index is equal to the perturbation index in many technical ap-
plications.

Examples: Electric Circuits

We discuss the differential index of two systems of DAEs, which result from
modelling an electric circuit by a network approach. The two circuits are
shown in Fig. 20.

The first circuit is an electromagnetic oscillator, which has already been
introduced in Sect. 1.2. It consists of a capacitance C, an inductance L
and a linear resistor R in parallel. The unknowns are the three currents
IC , IL, IR through the basic elements and the node voltage U depending
on time. Each basic element is modelled by a current-voltage relation.
Furthermore, Kirchhoff’s current law is added. We obtain a linear system
of DAEs

CU ′ = IC

LI ′L = U

0 = U −RIR

0 = IC + IL + IR.

(6.22)

We can eliminate the unknowns IC , IR such that a linear system of ODEs
is achieved

CU ′ = −IL − 1
RU

LI ′L = U.
(6.23)

Systems of the form (6.22) are arranged automatically by tools of computer
aided design (CAD). In contrast, the advantageous description by ODEs
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Figure 20: Example circuits.

like (6.23) has to be constructed by ourselves.

Differentiating the system (6.22) with respect to time yields

CU ′′ = I ′C

LI ′′L = U ′

0 = U ′ −RI ′R

0 = I ′C + I ′L + I ′R.

Hence we obtain an explicit system of ODEs for the unknowns

U ′ = 1
C IC

I ′L = 1
LU

I ′R = 1
RU

′ = 1
RC IC

I ′C = −I ′L − I ′R = − 1
LU − 1

RC IC .

Since just one differentiation is necessary to achieve this ODE system, the
differential index of the DAE system (6.22) is k = 1.

Now we consider the second circuit, which consists of a capacitance C, an
independent voltage source V (t) and a linear resistor R. The corresponding
DAE model reads

CU ′ = IC

0 = U − V (t)

0 = U −RIR

0 = IC + IV + IR.

(6.24)
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If the input voltage V (t) is smooth, the solution can be calculated analyti-
cally

U = V (t), IR = 1
RV (t), IC = CV ′(t), IV = −CV ′(t)− 1

RV (t).

Furthermore, we arrange an explicit system of ODEs for the unknowns
starting from the DAE system (6.24)

U ′ = 1
C IC

I ′R = 1
RU

′ = 1
RC IC

I ′C = CU ′′ = CV ′′(t)

I ′V = −I ′C − I ′R = −CV ′′(t)− 1
RC IC .

In this case, two differentiations of the system (6.24) with respect to time
are required, since the relation U ′′ = V ′′ is used. Hence the differential
index of the DAE system (6.24) is k = 2.

6.4 Methods for General Systems

In the next two sections, we outline the construction of numerical techniques
for systems of DAEs. The numerical methods represent generalisations
of corresponding schemes for systems of ODEs introduced in the previous
chapters.

We consider initial value problems of fully implicit systems of DAEs (6.17),
i.e., the most general form. The initial values have to be consistent with re-
spect to the DAEs. We apply a grid x0 < x1 < x2 < · · · < xm. Correspond-
ing approximations yi

.
= y(xi) of the solution are determined recursively by

a numerical method.

Linear multistep methods

In case of systems of ODEs y′ = f(x, y), a linear multistep method is defined
in (4.6) for equidistant step sizes. Since y′ = f holds, we can rewrite the
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scheme as
k∑

l=0

αlyi+l = h
k∑

l=0

βlzi+l, (6.25)

where zi+l = f(xi+l, yi+l) represents an approximation of y′(xi+l). In case
of general DAE systems, this value is obtained by solving the nonlinear
system (6.17). It follows the method

k∑
l=0

αlyi+l = h
k∑

l=0

βlzi+l

F (zi+k, yi+k, xi+k) = 0

(6.26)

with the unknowns yi+k, zi+k in each step.

The BDF methods, see Sect. 4.5, are suitable for solving systems of DAEs.
The k-step BDF scheme reads

k∑
l=0

αlyi+l = hzi+k.

(Remark that the numbering of the coefficients is opposite to (4.29)). Hence
we can replace zi+l in F (zi+k, yi+k, xi+k) by this formula. Consequently, the
method (6.26) exhibits the simple form

F

(
1

h

k∑
l=0

αlyi+l, yi+k, xi+k

)
= 0

with then unknown yi+k. The BDF methods for fully implicit DAE sys-
tems (6.17) are implemented in the FORTRAN code DASSL (Differential
Algebraic System SoLver) by Petzold (1982).

Although the trapezoidal rule represents a one-step method, we can write
it in the form (6.25)

yi+1 − yi = h
[
1
2zi +

1
2zi+1

]
⇒ zi+1 = −zi + 2

h(yi+1 − yi).

Inserting zi+1 in F (zi+1, yi+1, xi+1) yields the scheme

F
(
−zi + 2

h(yi+1 − yi), yi+1, xi+1

)
= 0 (6.27)
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with the unknown yi+1. The value zi is known from the previous step.

Runge-Kutta Methods

We consider a Runge-Kutta method given in (3.14) for systems of ODEs.
An approximation of the solution at the intermediate points is achieved via

y(x0 + cih)
.
= y0 + h

s∑
j=1

aijkj for i = 1, . . . , s.

Due to y′ = f , the increments ki represent approximations of the derivatives
y′(x0 + cih), i.e.,

y′(x0 + cih)
.
= ki = f

(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
for i = 1, . . . , s.

Now we solve general DAE systems. We apply the nonlinear system (6.17)
for the determination of these derivatives again. It holds exactly

F (y′(x0 + cih), y(x0 + cih), x0 + cih) = 0 for i = 1, . . . , s.

It follows the numerical method

F

(
ki, y0 + h

s∑
j=1

aijkj, x0 + cih

)
= 0 for i = 1, . . . , s ,

y1 = y0 + h
s∑

i=1

biki.

(6.28)

In case of systems My′ = f(x, y), the technique (6.28) results just to (6.4).

As example, we consider the trapezoidal rule again. The coefficients of this
Runge-Kutta scheme are c1 = 0, c2 = 1, a11 = a12 = 0, a21 = a22 = b1 =
b2 =

1
2 . It follows

F (k1, y0, x0) = 0
F (k2, y0 + h(12k1 +

1
2k2), x1) = 0

y0 + h(12k1 +
1
2k2) = y1.
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If we replace k2 by the other values, then the second equation changes into

F

(
−k1 +

2

h
(y1 − y0), y1, x1

)
= 0.

Hence the method coincides with (6.27).

6.5 Methods for Semi-Explicit Systems

In case of semi-explicit systems of DAEs (6.19), methods for systems of
ODEs can be generalised immediately. Two approaches exist for this pur-
pose.

Direct Approach (ε-embedding)

The semi-explicit system of DAEs (6.19) is embedded into a family of sys-
tems of ODEs

y′(x) = f(y(x), z(x)),

εz′(x) = g(y(x), z(x)),
⇔

y′(x) = f(y(x), z(x)),

z′(x) = 1
εg(y(x), z(x)).

(6.29)

The original DAE is recovered for ε→ 0. Systems of the form (6.29) are also
called singularly perturbed systems. Systems of DAEs can be seen as the
limit case of stiff systems, where the amount of stiffness becomes infinite.

As an example, we consider the Van-der-Pol oscillator

y′′ + µ2((y2 − 1)y′ + y) = 0 ⇔ εy′′ + (y2 − 1)y′ + y = 0

with parameter ε = 1
µ2 . The system becomes more and more stiff in case of ε → 0. We

investigate the corresponding system of first order

y′ = z, εz′ = −(y2 − 1)z − y.

Setting ε = 0 implies the semi-explicit DAE system

y′ = z, 0 = −(y2 − 1)z − y.

It follows
y′ = z =

y

1− y2
for y ̸= ±1.
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We can solve this ODE for y partly and achieve (with a constant C ∈ R)

ln |y(x)| − 1
2
y(x)2 = x+ C.

If a solution of the semi-explicit DAEs reaches a singularity y = ±1, then the existence
of the solution is violated. In contrast, the solution of the ODE continues to exist and
exhibits steep gradients at the singularity. This solution changes fastly from y = 1 to
y = −2 and from y = −1 to y = 2. We apply the above relation to obtain an estimate of
the period of the solution of the oscillator. Let y(x1) = 2 and y(x2) = 1, i.e., the solution
changes slowly between x1 and x2. It follows

ln 2− 2 = x1 + C, ln 1− 1
2
= x2 + C ⇒ x2 − x1 = − ln 2 + 3

2
.

The period is T ≈ 2(x2−x1) = 3− 2 ln 2 ≈ 1.6137 in case of ε ≈ 0. Numerical simulations

confirm this estimate.

Now we can apply a numerical method for ODEs to the system (6.29).
Implicit techniques typically have to be considered, since DAEs represent
the limit of stiff systems of ODEs. Performing the limit ε → 0 yields a
method for the semi-explicit DAEs (6.19).

For example, the implicit Euler method implies

y1 = y0 + hf(y1, z1),

z1 = z0 + h1
εg(y1, z1).

The second equation is equivalent to

εz1 = εz0 + hg(y1, z1).

In the limit ε→ 0, we obtain the numerical method

y1 = y0 + hf(y1, z1),

0 = g(y1, z1),
(6.30)

which represents a nonlinear system for the unknown approximation y1, z1.

Indirect Approach (state space form)

For the semi-explicit DAEs (6.19), we consider the component z as the
solution of a nonlinear system for given y, i.e.,

z(x) = Φ(y(x)), g(y(x),Φ(y(x))) = 0. (6.31)
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Due to the implicit function theorem, the regularity of the Jacobian matrix
∂g
∂z is sufficient for the existence and the local uniqueness of a continuous
function Φ : U → V with U ⊂ R

n1, V ⊂ R
n2. This condition corresponds

to a semi-explicit DAE of differential index 1. Consequently, the differential
part of the DAE depends only on y

y′(x) = f(y(x),Φ(y(x))). (6.32)

This system is called the state space form of the problem. Now we are able
to use a method for ODEs directly to this system. In a numerical method,
we have to evaluate the right-hand side of (6.32) for given values y. Each
evaluation demands the solution of a nonlinear system (6.31).

As example, we apply the implicit Euler method again. It follows

y1 = y0 + hf(y1,Φ(y1)),

0 = g(y1,Φ(y1)).
(6.33)

Hence the resulting technique (6.33) is equivalent to the scheme (6.30) ob-
tained by the direct approach in case of the implicit Euler method.

The direct and indirect approach represent just techniques to obtain a sug-
gestion for a numerical method. The properties of the corresponding method
for ODEs do not necessarily hold for the resulting scheme to solve DAEs.
Hence an analysis of consistency and stability of the constructed numerical
methods has still to be performed.

Runge-Kutta Methods

We investigate Runge-Kutta methods now, see Sect. 3.5. The indirect ap-
proach is straightforward to apply. We obtain the formula

Yi = y0 + h
s∑

j=1

aijf(Yj, Zj)

0 = g(Yi, Zi) for i = 1, . . . , s

y1 = y0 + h
s∑

i=1

bif(Yi, Zi).
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The value z1 can be computed by solving the nonlinear system g(y1, z1) = 0.

The direct approach yields

Yi = y0 + h
s∑

j=1

aijf(Yj, Zj)

εZi = εz0 + h
s∑

j=1

aijg(Yj, Zj) for i = 1, . . . , s

y1 = y0 + h
s∑

i=1

bif(Yi, Zi)

εz1 = εz0 + h
s∑

i=1

big(Yi, Zi).

We assume that the matrix A = (aij) is regular in the following. Let
A−1 = (ωij). We transform the second equation into

hg(Yi, Zi) = ε
s∑

j=1

ωij(Zi − z0) for i = 1, . . . , s.

Accordingly, the fourth equation becomes

εz1 = εz0 + ε
s∑

i=1

bi

(
s∑

j=1

ωij(Zi − z0)

)
.

The limit ε→ 0 yields the method

Yi = y0 + h
s∑

j=1

aijf(Yj, Zj)

0 = g(Yi, Zi) for i = 1, . . . , s

y1 = y0 + h
s∑

i=1

bif(Yi, Zi)

z1 =

(
1−

s∑
i,j=1

biωij

)
z0 +

s∑
i,j=1

biωijZj.

(6.34)

The scheme (6.34) of the direct approach coincides with the method (6.28)
applied to semi-explicit DAEs in case of a regular coefficient matrix A.
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In (6.34), the involved coefficient satisfies

1−
s∑

i,j=1

biωij = lim
z→∞

R(z) =: R(∞)

with the stability function R(z) = 1 + zb⊤(I − zA)−1
1 of the Runge-Kutta

method from (5.7).

A Runge-Kutta method is called stiffly accurate, if it holds

asi = bi for i = 1, . . . , s.

For example, the RadauIIa schemes are stiffly accurate (s = 1: implicit
Euler). In this case, it follows y1 = Ys and z1 = Zs, i.e., the direct approach
coincides with the indirect approach.

Given a Runge-Kutta method with order of consistency p in case of ODEs,
we are interested in the order of convergence in case of semi-explicit DAEs.
Let q be the stage order of the method, i.e., Yi−y(x0+cih) = O(hq+1) for all i
in case of ODEs. We consider semi-explicit DAEs (6.19) with differential
index 1. Using the indirect approach, the order of convergence is equal p for
both differential part y and algebraic part z. The direct approach implies
the global errors

yN − y(xend) = O(hp), zN − z(xend) = O(hr)

with

(i) r = p for stiffly accurate methods (R(∞) = 0),

(ii) r = min(p, q + 1) for −1 ≤ R(∞) < 1,

(iii) r = min(p− 1, q) for R(∞) = 1,

(iv) divergence if |R(∞)| > 1.

For methods, which are not stiffy accurate, an order reduction appears
(r < p). The A-stability of a Runge-Kutta technique is sufficient (not
necessary) for the convergence of the algebraic part.
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Now we consider DAEs of index 2. Thereby, we analyse semi-explicit DAEs
of the form

y′ = f(y, z),
0 = g(y).

(6.35)

The system cannot have the differential index 1, since it holds ∂g
∂z ≡ 0. The

system (6.35) exhibits the differential index k = 2 if the matrix ∂g
∂y

∂f
∂z is

always regular. It can be shown that a system of the form (6.35) has the
differential index k = 2 if and only if the perturbation index is k = 2.

The indirect approach cannot be applied to (6.35), since the function Φ
from (6.31) is not defined. In contrast, the direct approach yields the same
Runge-Kutta method (6.34) as in the case of index 1 (just replace g(y, z) by
the special case g(y)). The analysis of convergence becomes more compli-
cated in case of differential index 2. We just cite the results for the Gauss
and the Radau methods with s stages. The following table illustrates the
orders of the local errors and the global errors.

local error global error local error global error
for ODEs for ODEs y z y z

Gauss, s odd 2s+ 1 2s s+ 1 s s+ 1 s− 1
Gauss, s even 2s+ 1 2s s+ 1 s s s− 2
RadauIA 2s 2s− 1 s s− 1 s s− 1
RadauIIA 2s 2s− 1 2s s 2s− 1 s

We recognise that the behaviour of the methods is much more complex than
in the case of index 1. The RadauIIA schemes exhibits the best convergence
properties within these examples, since these techniques are stiffly accurate.

For further reading on numerical methods for systems of DAEs, see
E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. (2nd Ed.) Springer, Berlin, 1996.
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Figure 21: Mathematical Pendulum.

6.6 Illustrative Example: Mathematical Pendulum

Fig. 21 demonstrates the problem of the mathematical pendulum. We desire
a mathematical model, which describes the positions ξ, η of the massm with
respect to time. On the one hand, Newton’s law states F = mx′′ for the
force F acting on the massm and for the space variables x := (ξ, η)⊤. On the
other hand, the force F is the sum of the gravitational force G = (0,mg)⊤

with gravitation constant g and the force Fr = −2λx in direction of the
rope, where λ represents a time-dependent scalar. The force Fr causes that
the mass moves on a circle with radius l, since the constant l denotes the
length of the rope. It follows

mξ′′(t) = −2λ(t)ξ(t)

mη′′(t) = −2λ(t)η(t)−mg.

A semi-explicit system of DAEs including five equations results

ξ′(t) = u(t)

η′(t) = v(t)

u′(t) = − 2
mλ(t)ξ(t)

v′(t) = − 2
mλ(t)η(t)− g

0 = ξ(t)2 + η(t)2 − l2

(6.36)

with the unknowns ξ, η, u, v, λ. The components u, v are the components
of the velocity of the mass, i.e., x′ = (u, v)⊤. The last equation of the
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system (6.36) represents the constraint that the mass moves on a circle
with radius l only. The unknown λ characterises the magnitude of the
force, which keeps the mass on this circle.

The most appropriate model of the mathematical pendulum results by con-
sidering the angle φ. It holds sinφ = ξ/l and cosφ = η/l. Consequently,
we achieve an ordinary differential equation of second order

φ′′(t) = −g
l
sin(φ(t)), φ(t0) = φ0, φ′(t0) = φ′

0.

Hence the problem can be modelled by an explicit system of two ODEs
of first order. In contrast, the system (6.36) represents a system of five
DAEs. However, computer aided design is able to construct mathematical
models based on DAEs automatically. A model for large technical problems
involving just ODEs cannot be found by the usage of existing software codes.

Differentiating the algebraic constraint of the system (6.36) with respect to
time yields the relation

2ξ(t)ξ′(t) + 2η(t)η′(t) = 0 ⇔ ξ(t)u(t) + η(t)v(t) = 0. (6.37)

Thus we obtain an additional algebraic relation, which the exact solution
of (6.36) satisfies. The equation (6.37) represents a hidden constraint, since
it is not included directly in the system (6.36). A further differentiation in
time shows the relation

u(t)2 + ξ(t)u′(t) + v(t)2 + η(t)v′(t) = 0. (6.38)

Multiplying the third and fourth equation of (6.36) by ξ and η, respectively,
it follows

ξ(t)u′(t) = − 2
mλ(t)ξ(t)

2

η(t)v′(t) = − 2
mλ(t)η(t)

2 − gη(t).

Summing up these two equations and using (6.38) implies an algebraic re-
lation for the unknown λ

λ(t) =
m

2l2
(
u(t)2 + v(t)2 − gη(t)

)
. (6.39)
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Differentiating this equation with respect to time results to

λ′(t) =
m

2l2
(2u(t)u′(t) + 2v(t)v′(t)− gv(t)) . (6.40)

Inserting the ODEs (6.36) and using (6.37) yields

λ′(t) = −3mg

2l2
v(t). (6.41)

If we replace the algebraic constraint in (6.36) by the equation (6.41), then
we achieve a system of five ODEs for the five unknowns. Three differen-
tiations of the original system (6.36) with respect to time are necessary
to derive this ODE system. Thus the differential index of the DAE sys-
tem (6.36) is k = 3. It can be shown that the perturbation index is also
k = 3.

Now we perform a numerical simulation of the mathematical pendulum
using the DAE model (6.36) as well as the regularised model with (6.41),
which represents an ODE model. We apply the parameters m = 1, l = 2,
g = 9.81. The initial values are

ξ(0) =
√
2, η(0) = −

√
2, u(0) = 0, v(0) = 0

The initial value λ(0) follows from (6.39). The numerical solutions are
computed in the time interval t ∈ [0, 20].

The BDF methods are damping the amplitude of oscillations in a numerical
simulation. In contrast, trapezoidal rule conserves the energy of a system
and thus the amplitude of oscillations is reproduced correctly. We solve the
ODE model by trapezoidal rule with adaptive step size control. Thereby,
two different demands of relative accuracy are applied, namely 10−3 and
10−6, whereas the absolute accuracy is set to 10−6. The number of neces-
sary integration steps is 610 and 4778, respectively. Fig. 22 illustrates the
solution of the coordinates ξ, η by phase diagrammes. We recognise that
the solution leaves the circle significantly in case of the lower accuracy.

To analyse this effect more detailed, we compute the values of the circle
condition (last equation of (6.36)) and of the hidden constraint (6.37). For
the exact solution, these values are equal to zero, since the constraints are
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satisfied. On the contrary, the numerical solution causes an error in these
constraints. Fig. 23 shows the corresponding discrepancies. We see that
the error increases in time for each accuracy demand. Thus the numerical
solution will leave a given neighbourhood of the circle at a later time. The
reason is that the simulated ODE system does not include the information
of the circle explicitly. This phenomenon is called drift off: the numeri-
cal solution of the regularised DAE, i.e., the ODE, drifts away from the
manifold, where the true solution is situated.

Alternatively, we simulate the DAE model (6.36) directly using the trape-
zoidal rule with constant step sizes. We apply 1000 integration steps in
the interval t ∈ [0, 20]. In each integration step, we perform just one step
of the Newton method to solve the involved nonlinear system of algebraic
equations.

The resulting solutions for ξ, η as well as the corresponding errors in the con-
straints are illustrated in Fig. 24. Both the circle condition and the hidden
constraint exhibit an oscillating error, whose amplitude remains constant
in time. Since the system (6.36) includes the circle condition directly, the
error in this constraint depends just on the accuracy demand in solving the
nonlinear system in each integration step. Hence the DAE model generates
a significantly better numerical approximation than the corresponding ODE
formulation using (6.41).
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Chapter 7

Boundary Value Problems

7

In the previous chapters, we have discussed initial value problems (IVPs) of
systems of ordinary differential equations (ODEs) or differential algebraic
equations (DAEs). Now we consider boundary value problems (BVPs) of
systems of ODEs.

7.1 Problem Definition

Let a system of ODEs
y′(x) = f(x, y(x)) (7.1)

be given with y : [a, b] → R
n and f : [a, b]×Rn → R

n for x ∈ [a, b]. On the
one hand, an IVP of the ODEs is specified by a condition y(a) = y0, where y0
is a prescribed value. Consequently, a solution of the system of ODEs in
the interval [a, b], which satisfies the initial condition, shall be determined.
For f ∈ C1, the IVP exhibits a unique solution for each y0 ∈ Rn in some
interval [a, a+ ε]. Thus n parameters identify a specific solution.

On the other hand, a two-point BVP is defined by a relation

r(y(a), y(b)) = 0 (7.2)

with a (general) function r : Rn × Rn → R
n. The function r depends on

the initial values y(a) and the final values y(b), which are both unknown a

153



priori. We want to achieve a solution, where the initial values and the final
values satisfy the condition (7.2). Since a solution of the system of ODEs
exhibits n degrees of freedom, it is reasonable to impose n equations for
obtaining a well-posed problem. However, the existence and uniqueness of
a solution of a BVP is not guaranteed as in the case of IVPs. Each problem
may have a unique solution, a finite number of solutions, an infinite family
of solutions or no solution at all. In the following, we assume that the BVP
exhibits a unique solution.

In most cases, linear boundary conditions appear, i.e.,

r(y(a), y(b)) ≡ Ay(a) +By(b)− c = 0 (7.3)

with constant matrices A,B ∈ R
n×n and a constant vector c ∈ R

n. In
contrast, the ODEs are often nonlinear.

Examples:

1. Consider the BVP for a scalar ODE of second order

u′′ = f(x, u, u′), u(0) = α, u(1) = β, (7.4)

where α, β ∈ R are predetermined. The equivalent system of first order
with y1 := u, y2 := u′ reads

y′1 = y2,
y′2 = f(x, y1, y2),

y1(0) = α, y1(1) = β. (7.5)

Thereby, the domain of dependence is standardised to x ∈ [0, 1]. The
boundary conditions are linear, see (7.3), where it holds

A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
, c =

(
α
β

)
.

A particular instance is the BVP

u′′(x) = λ sinh(u(x)), u(0) = 0, u(1) = 1

with a real parameter λ ≥ 0.
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Figure 25: Beam on an elastic underground with mass on top.

2. We consider a beam of length l on an elastic underground, where some
mass is put on top, see Fig. 25. Let y(x) describe the positon of the
beam for x ∈ [0, l]. It follows the ODE

−(a(x)y′′(x))′′ + k(x)y(x) + p(x) = 0,

where a(x) characterises the stiffness of the beam, k(x) corresponds to
the spring constants of the elastic underground and p(x) specifies the
mass distribution. In case of a(x) ≡ a0, we obtain the equivalent ODE

y(4)(x) =
k(x)

a0
y(x) +

p(x)

a0
.

Since the corresponding system of first order consists of four equations,
we have to specify four boundary conditions.

Several possibilities exist:

(i) At the boundaries, the beam rests upon supports from below:

y(0) = 0, y(l) = 0, y′′(0) = 0, y′′(l) = 0.

(ii) At the boundaries, the beam is fixed in horizontal direction:

y(0) = 0, y(l) = 0, y′(0) = 0, y′(l) = 0.

(iii) The beam is not supported or fixed at all:

y′′(0) = 0, y′′(l) = 0, y′′′(0) = 0, y′′′(l) = 0.
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Furthermore, we can have mixed types of boundary conditions, where
the type at x = 0 is different from the type at x = l.

Separated boundary conditions

Often linear boundary conditions (7.3) are separated, i.e., they exhibit the
form

Ãy(a) = c1, B̃y(b) = c2 (7.6)

with matrices Ã ∈ R
n1×n, B̃ ∈ R

n2×n and vectors c1 ∈ R
n1, c2 ∈ R

n2

(n1 + n2 = n). For example, see the problem (7.5), where Ã = (1, 0) and
B̃ = (1, 0). Periodic BVPs are not separated. On the one hand, the special
case n1 = n (n2 = 0, B̃ = ∅) in (7.6) just represents an IVP provided
that det Ã ̸= 0. On the other hand, the case n2 = n (n1 = 0, Ã = ∅)
corresponds to a final value problem (or end value problem) provided that
det B̃ ̸= 0. The final value problem can be resolved as an IVP by an
integration backwards from x = b to x = a. A non-trivial BVP appears for
n1, n2 ≥ 1.

Periodic problems of non-autonomous systems

A periodic solution y of the system of ODEs is characterised by the property
y(x) = y(x+T ) for all x, where T > 0 is the period. Therefore, we demand
also f(x, z) = f(x + T, z) for each constant z ∈ Rn. The periodic solution
with minimum period T > 0 is uniquely determined by the two-point BVP
y(0) = y(T ) (provided that IVPs are uniquely solvable). If follows the
periodic boundary value problem

r(y(0), y(T )) ≡ y(0)− y(T ) = 0, (7.7)

where the period T > 0 is given. The boundary conditions exhibit the linear
form (7.3) with A = I, B = −I and c = 0. Periodic BVPs already make
sense in the scalar case (n = 1).
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Periodic problems of autonomous systems

An autonomous system of ODEs reads

y′(x) = f(y(x)). (7.8)

Given a solution y : R → R
n, the shifted function yc(x) := y(x + c) with

a constant c ∈ R also solves the system (7.8). A periodic solution satisfies
y(x) = y(x + T ) for all x with some minimal period T > 0. The period
is unknown a priori. It follows that a periodic solution is not unique. We
require an additional condition to achieve an isolated solution. For example,
we demand y1(0) = η with some η ∈ R for the first component.

We can formulate a two-point BVP via the linear transformation x = sT
(x ∈ [0, T ], s ∈ [0, 1]). Let ỹ(s) := y(sT ). We arrange the system of ODEs

ỹ′(s) = Tf(ỹ(s)),
T ′(s) = 0,

where a trivial ODE for the constant T is included. The corresponding
boundary conditions read

ỹ(0)− ỹ(1) = 0,
ỹ1(0)− η = 0.

Hence we achieve n+1 ODEs and n+1 boundary conditions for n+ 1 un-
known functions, where one function represents the unknown period. Ac-
cordingly, we achieve the standard formulation of a two-point BVP and
common numerical methods are feasible.
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7.2 Single Shooting Method

Now we will construct a numerical method for solving the BVP (7.2) of the
system of ODEs. Since we have considered IVPs in the previous chapters,
we want to apply IVPs for the solution of the BVP. For a smooth right-
hand side f , an IVP exhibits a unique solution in general. The initial values
determine the solution in the complete interval, especially in the final point
x = b. We note the dependence, see also Fig. 26,

s := y(a) −→ y(b) = y(b; s),

where s ∈ Rn are free parameters. Thus we rewrite the boundary conditions
as

r(y(a), y(b)) ≡ r(s, y(b; s)) = 0.

We consider a nonlinear system of algebraic equations

g(s) :≡ r(s, y(b; s)) = 0 (g : Rn → R
n), (7.9)

where the initial values s ∈ R
n represent the unknowns. Consequently,

we want to determine the initial values, which produce the solution of the
BVP. Each evaluation of the nonlinear system (7.9) demands the solution
of an IVP to obtain the value y(b; s). The nonlinear system can be solved
by methods of Newton type.

Example

We consider the BVP

u′′ = λ sin (2πu) , u(0) = 0, u(1) = 1 (7.10)
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Figure 27: Shooting method – solutions of IVPs for s̃(0) (left) and s̃(4) (right).

with unknown solution u ∈ C2 and a real parameter λ > 0. For λ = 0,
the solution becomes just u(x) ≡ x. The equivalent system of first order
(y1 := u, y2 := u′) reads

y′1 = y2,
y′2 = λ sin (2πy1) ,

y1(0) = 0, y1(1) = 1.

Initial and boundary conditions yield

y(0) = s =

(
s1
s2

)
, r(s, y(1; s)) ≡

(
s1 − 0

y1(1; s1, s2)− 1

)
=

(
0
0

)
.

In this example, we can use the first equation to eliminate the unknown s1
and obtain one equation for s̃ := s2 alone. It follows

y(0) =

(
0
s̃

)
, g(s̃) ≡ y1(1; 0, s̃)− 1 = 0.

This nonlinear equation can be solved via bisection. Alternatively, a Newton
iteration yields an approximation now. We use λ = 5 and the starting
value s̃(0) = 1. Trapezoidal rule resolves the IVPs. Fig. 27 illustrates the
solution of the IVPs for the starting value as well as after four iteration steps.
We observe that the boundary condition is satisfied sufficiently accurate.
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Computation of Jacobian matrix

Newton’s method to solve the nonlinear system (7.9) yields the iteration

s(i+1) = s(i) −
(
Dg(s(i))

)−1

g(s(i)) for i = 0, 1, 2, . . . . (7.11)

Consequently, we have to compute (approximately) the Jacobian matrix
Dg ∈ Rn×n. The chain rule of multidimensional differentiation implies

Dg(s) =
∂

∂s
r =

∂r

∂y(a)
+

∂r

∂y(b)
· ∂y(b; s)

∂s
. (7.12)

The matrices ∂r
∂y(a) ,

∂r
∂y(b) are often directly available. For example, linear

boundary conditions (7.3) imply ∂r
∂y(a) = A, ∂r

∂y(b) = B.

The matrix ∂y(b;s)
∂s is called sensitivity matrix, since it describes the sensi-

tivity of the solution with respect to the initial values. The matrix ∂y(x;s)
∂s is

identical to the matrix Ψ(x) introduced in Theorem 4, see Sect. 2.3.

Two possibilities exist to compute the sensitivity matrix Ψ(b):

1. Numerical differentiation:
Numerical differentiations yield the columns of the matrix Ψ ∈ Rn×n.
Let Ψj ∈ Rn be the jth column. We obtain the approximation

Ψj(b; s)
.
=

1

δj
[y(b; s+ δjej)− y(b; s)] for j = 1, . . . , n ,

where ej = (0, . . . , 0, 1, 0, . . . , 0)⊤ ∈ Rn represents the jth unit vector.
The selection of the increment δj ∈ R\{0} depends on the jth com-
ponent sj of s. Given the machine precision ϵ, an appropriate choice
is

δj :=


sj ·

√
ϵ for |sj| > 1,

sign(sj) ·
√
ϵ for 0 < |sj| ≤ 1,√

ϵ for sj = 0.

Hence n additional IVPs of the underlying system of ODEs have to be
resolved with perturbed initial values s+ δjej for j = 1, . . . , n.
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2. Solve matrix-valued ODEs:
As shown in Sect. 2.3, the matrix Ψ satisfies an IVP of the matrix-
valued system (2.11). We write this system of ODEs in the form

Ψ′(x; s) = Df(x, y(x; s)) ·Ψ(x; s), Ψ(a; s) = I, (7.13)

where Df = ∂f
∂y ∈ R

n×n denotes the Jacobian matrix of f with re-
spect to y. The identity matrix I ∈ Rn×n provides the initial values.
The system (7.13) is linear. Thus an implicit method demands just
the solution of a linear system in each integration step. The ODE
system (7.13) is also called the sensitivity equations.

The a priori unknown function y(x; s) appears in the matrix-valued
ODEs (7.13). We can solve the ODEs for y(x; s) in combination with
the system (7.13). Alternatively, y(x; s) is computed first, which yields
approximations just in grid points a = x0 < x1 < x2 < · · · < xend = b .
Then the matrix-valued ODEs (7.13) are solved by a numerical method,
where the required values y(x; s) are interpolated from the available
data y(xi; s).

Often the second technique yields better approximations and is more ro-
bust than the first strategy. However, for non-stiff problems (using explicit
methods for IVPs) the numerical differentiation is preferred, since evalua-
tions of the Jacobian matrix do not appear. In case of stiff problems, often
the matrix-valued ODEs are resolved, because the integration steps can be
combined efficiently with the solution of the underlying system of ODEs by
implicit methods for IVPs.

For solving nonlinear systems of algebraic equations, we applied the sim-
plified Newton method in implicit integrators for IVPs, since good starting
values are given by the solution of the previous step. In contrast, good
starting values are often not available in case of BVPs. Hence we apply the
(ordinary) Newton method.
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7.3 Multiple Shooting Method

The single shooting method fails if one of the following two cases occur:

1. We always assume that a solution of the BVP exists. Let s∗ be the
corresponding initial value. The solution y(x; s∗) exists for all x ∈ [a, b].
In the Newton iteration, we need some starting values s(0). However,
the corresponding solution y(x; s(0)) may exist just within an interval
x ∈ [a, a + ε) for ε ≤ b − a. Thus the single shooting method fails
completely.

Example: We discuss the BVP

y′′ = −(y′)2, y(0) = 1, y(1) = −4.

The ODE is satisfied by the function

y(x; s) = ln(sx+ 1) + 1 for s ∈ R

and it holds y(0; s) = 1 for all s. The boundary condition y(1) = −4 is fulfilled for

s∗ = −1 + e−5 = −0.993 . . . .

However, the logarithm is defined for sx+1 > 0 only. Assuming s < 0, this condition

is equivalent to x < 1
|s| . For the starting value s(0) = −1, the solution exists just

in x ∈ [0, 1) and the shooting method breaks down. For s(0) < −1, the existence is

given in x ∈ [0, ε) with ε < 1. The case s(0) > −1 is feasible.

2. In some applications, the sensitivity of the solution with respect to the
initial values is extremely high. Hence the condition of the IVPs is very
bad. The correct solution cannot be reproduced by solving an IVP in
x ∈ [a, b], since small numerical errors are amplified.

The estimate (2.10) from Sect. 2.3 yields

∥y(b; s+∆s)− y(b; s)∥ ≤ eL(b−a) · ∥∆s∥ (7.14)

with the Lipschitz-constant satisfying ∥f(x, y)− f(x, z)∥ ≤ L · ∥y− z∥.
Thus the difference between two IVPs is allowed to increase exponen-
tially with respect to the length b−a of the interval, which also happens
sometimes.
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Example: We consider the linear problem(
y′1
y′2

)
=

(
0 1
110 1

)(
y1
y2

)
, y1(0) = 1, y1(10) = 1. (7.15)

The general solution of this system of ODEs reads(
y1(x)
y2(x)

)
= C1e

−10x

(
1

−10

)
+ C2e

11x

(
1
11

)
, C1, C2 ∈ R.

Given the initial value y(0) = (s1, s2)
⊤, the solution is(

y1(x)
y2(x)

)
=

11s1 − s2
21

e−10x

(
1

−10

)
+

10s1 + s2
21

e11x
(
1
11

)
.

The boundary conditions are satisfied for the initial values

s1 = 1, s2 = −10 +
21(1− e−100)

e110 − e−100
≈ −10 + 10−47.

At x = 10, it holds e−10x ≈ 0 and e11x ≈ 1048. The corresponding sensitivity of the
solution at x = 10 is approximately(

∆y1
∆y2

)
≈ e110

21
[10∆s1 +∆s2]

(
1
11

)
.

If we know s up to machine precision ϵ, i.e.,
|∆sj |
|sj | ≈ ϵ, it follows

|∆yj| ≈
e110

21
ϵ ≈ 1030

for ϵ ≈ 10−16. Hence we cannot reproduce the correct solution of the BVP. This prob-

lem can be solved by using a sufficiently small machine precision (longer mantissa).

However, we want to avoid this, since a larger computational effort results.

Both scenarios are omitted by a multiple shooting method. The idea is to
divide the interval [a, b] into several subintervals and to consider an IVP
in each subinterval. Fig. 28 sketches this technique. The subintervals are
defined by the grid

a = x1 < x2 < · · · < xm−1 < xm = b. (7.16)

The corresponding IVPs read

y′(x) = f(x, y(x)), y(xk) = sk with x ∈ [xk, xk+1] (7.17)
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Figure 28: Strategy of multiple shooting method.

for k = 1, 2, . . . ,m − 1. Let y(x; xk, sk) be the solution of the kth prob-
lem (7.17) and sm := y(xm; xm−1, sm−1). The complete solution y(x) for
x ∈ [a, b] is not continuous for general initial values. We demand the conti-
nuity together with the boundary conditions

y(xk+1;xk, sk) = sk+1 for k = 1, 2, . . . ,m− 1

r(s1, sm) = 0.

These conditions yield a nonlinear system

G(S) :=


y(x2;x1, s1)− s2
y(x3;x2, s2)− s3

...
y(xm;xm−1, sm−1)− sm

r(s1, sm)

 = 0, S =


s1
s2
...

sm−1

sm


with G : Rnm → R

nm and the unknowns S ∈ Rnm. We solve the nonlinear
system by a Newton iteration again

S(i+1) = S(i) −
(
DG(S(i))

)−1

G(S(i)) for i = 0, 1, 2, . . . .

The involved Jacobian matrix exhibits the block structure

DG =



C1 −I
C2 −I

. . . . . .
. . . . . .

Cm−1 −I
A B


(7.18)
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with the identity I and the matrices

A :=
∂r

∂s1
, B :=

∂r

∂sm
, Ck :=

∂y(xk+1; xk, sk)

∂sk
.

The matrices Ck represent sensitivity matrices, which can be computed as
in a single shooting method, see Sect. 7.2. Although m− 1 IVPs (7.17) are
considered, the computational effort is independent of m, since the subdivi-
sions always generate the same total interval [a, b]. Hence the computational
work for evaluating G and DG is nearly the same as in a single shooting
method.

Under some general assumptions, it can be shown that the Jacobian ma-
trix (7.18) is regular. Let ∆sk := s

(i+1)
k − s

(i)
k and G = (g1, . . . , gm). The

linear system in each Newton step reads

C1∆s1 −∆s2 = −g1
C2∆s2 −∆s3 = −g2

...
Cm−1∆sm−1 −∆sm = −gm−1

A∆s1 +B∆sm = −gm.

We can eliminate ∆s2, . . . ,∆sm successively. Using

∆sk+1 = gk + Ck∆sk, (7.19)

it follows the condensed system

(A+BCm−1Cm−2 · · ·C2C1)∆s1 = w (7.20)

with

w := −(gm +Bgm−1 +BCm−1gm−2 + · · ·+BCm−1Cm−2 · · ·C2g1).

Gaussian elimination yields the solution ∆s1 of the linear system (7.20).
We obtain the other increments ∆sk+1 successively using (7.19). The com-
putational effort for this linear algebra part becomes more expensive than
in a single shooting method. However, the total effort is dominated by the
evaluation of G and DG, which is not more costly in comparison to a single
shooting technique.
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In the multiple shooting method, we reduce the critical behaviour indicated
by the estimate (7.14). The technique implies

∥y(xk+1;xk, sk +∆sk)− y(xk+1;xk, sk)∥ ≤ eL(xk+1−xk) · ∥∆sk∥

for some perturbation ∆sk. In case of m − 1 subintervals with the same
length, it follows

eL(xk+1−xk) = eL
b−a
m−1 =

m−1
√
eL(b−a).

For example, it holds

e110 ≈ 1048,
√
e110 ≈ 1024,

3
√
e110 ≈ 1016,

4
√
e110 ≈ 1012.

Hence the multiple shooting method with four subintervals should be suc-
cessful for the example (7.15) using the machine precision ϵ ≈ 10−16.

On the one hand, let Mk ⊂ R
n be the set of all initial values sk, where

the solution of (7.17) exists in the interval [xk, xk+1]. On the other hand,
let Nk ⊂ R

n be the set of all sk, where the solution of (7.17) exists in the
total interval [a, b]. A single shooting method using the unknown sk is only
feasible for sk ∈ Nk ⊂ Mk. In contrast, the multiple shooting method is
defined for initial values

S ∈M :=M1 ×M2 × · · · ×Mm−1 ×Rn.

Thus we avoid the other drawback of the single shooting technique.

We outline the determination of an appropriate subdivision (7.16). We
assume that a starting trajectory η : [a, b] → R

n is given, which fulfills the
boundary conditions. (η is a guess for the unknown solution.) Let x1 := a.
If xk is chosen, then solve the IVP y′ = f(x, y), y(xk) = η(xk). We choose a
new grid point xk+1 when the solution y becomes large in comparison to η.
For example, xk+1 is the smallest value ξ > xk satisfying

∥y(ξ)∥ ≥ γ · ∥η(ξ)∥

using some vector norm and a threshold γ, say γ = 2. The function η also
provides us starting values s

(0)
k := η(xk) for the Newton iteration.
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7.4 Finite Difference Methods

Another idea to solve the boundary value problem (7.1),(7.2) is to discretise
the derivatives in the ODEs by a difference formula first. This strategy
yields a nonlinear system of algebraic equations for unknown values of the
solution in grid points. We consider an equidistant grid

xj = a+ jh with h = b−a
m+1 for j = 0, 1, . . . ,m,m+ 1. (7.21)

with some m ∈ N. We want to determine approximations uj
.
= y(xj) of

the unknown solution for each j = 0, . . . ,m + 1. It holds u0
.
= y(a) and

um+1
.
= y(b).

For example, we apply finite differences of first order, which correspond to
the Euler scheme. The difference formula reads

y(x+ h)− y(x)

h
= y′(x) + 1

2hy
′′(x+ ϑh) = y′(x) +O(h) (7.22)

with ϑ ∈ (0, 1). It follows the system

uj+1 − uj
h

= f(xj, uj) for j = 0, 1 . . . ,m.

Together with the boundary conditions, we obtain

uj+1 − uj − hf(xj, uj) = 0 for j = 0, 1 . . . ,m

r(u0, um+1) = 0,

which represents a nonlinear system of (m+2)n equations for the (m+2)n
unknown values. Again, methods of Newton type can be applied to solve
this system provided that f, r ∈ C1 holds. The corresponding Jacobian
matrix exhibits the block structure

−I − hDf I

−I − hDf I
. . . . . .

. . . . . .

−I − hDf I
∂r

∂y(a)
∂r

∂y(b)


,
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where each block has the size n×n. (Df = ∂f
∂y denotes the Jacobian matrix

of f .) Therefore a band structure of the matrix appears (except for the
block ∂r

∂y(a)). The computational effort for an LU -decomposition of this

matrix is approximately O(m2n2) for m≫ n.

Alternatively, we use finite differences of second order to achieve a higher
accuracy. This symmetric difference formula reads

y(x+ h)− y(x− h)

2h
= y′(x) +O(h2). (7.23)

This approach corresponds to a midpoint rule. We set up the system

uj+1 − uj−1

2h
= f(xj, uj) for j = 1, . . . ,m.

Together with the boundary conditions, we obtain less equations than un-
knowns now. Hence for j = 0, the formula (7.22) of first order is added.
We arrange the system

u1 − u0 − hf(x0, u0) = 0

uj+1 − uj−1 − 2hf(xj, uj) = 0 for j = 1, . . . ,m

r(u0, um+1) = 0,

i.e., (m+2)n equations for (m+2)n unknowns again. In a Newton method,
the Jacobian matrix owns the structure

−I − hDf I

−I −2hDf I
. . . . . . . . .

. . . . . . . . .

−I −2hDf I
∂r

∂y(a)
∂r

∂y(b)


.

The difference formula of first order for j = 0 can be replaced by an asym-
metric formula of second order (similar to BDF2). Consequently, the com-
plete finite difference method is consistent of second order.
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An advantage of the single or multiple shooting method is that the involved
nonlinear systems exhibits a much lower dimension than the nonlinear sys-
tems from finite difference methods. Nevertheless, finite difference methods
are often more robust, i.e., the corresponding Newton methods feature bet-
ter convergence properties. The two disadvantages of the single shooting
method mentioned at the beginning of Sect. 7.3 are also omitted in a finite
difference method, since no IVPs are resolved now.

Periodic problems

A periodic solution satisfies y(x + T ) = y(x) for all x ∈ R with the pe-
riod T > 0. The periodic BVP reads y(0) = y(T ). In the finite difference
method, it follows u0 = um+1 due to u0

.
= y(0), um+1

.
= y(T ), a = 0, b = T .

We can use the relation u0 = um+1 to eliminate unknowns of the system.
For the difference formula (7.22) of first order, it follows a system of (m+1)n
equations for (m+ 1)n unknowns

uj+1 − uj − hf(xj, uj) = 0 for j = 0, . . . ,m− 1

u0 − um − hf(xm, um) = 0.

Moreover, the periodicity condition y(x + T ) = y(x) for all x also implies
the extended boundary conditions ui = um+1+i for possibly new grid points
xi = ih and an integer i ∈ Z. We can apply difference formulas (7.23) of
second order everywhere by identifying u0 = um+1, u−1 = um. The resulting
nonlinear system reads

u1 − um − 2hf(x0, u0) = 0

uj+1 − uj−1 − 2hf(xj, uj) = 0 for j = 1, . . . ,m− 1

u0 − um−1 − 2hf(xm, um) = 0.

The corresponding Jacobian matrix exhibits a block tridiagonal structure
and additional blocks in the edges of the matrix.
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ODE of second order

For a BVP of an ODE of second order

y′′ = f(x, y), y(a) = α, y(b) = β,

we can construct a finite difference method without using the equivalent
system of ODEs of first order. We apply the symmetric difference formula

y(x+ h)− 2y(x) + y(x− h)

h2
= y′′(x) +

h2

12
y(4)(x+ ϑh) (7.24)

with ϑ ∈ (−1, 1). It follows the system

u0 − α = 0

uj+1 − 2uj + uj−1 − h2f(xj, uj) = 0 for j = 1, . . . ,m

um+1 − β = 0.

(7.25)

If the function f is nonlinear with respect to y, then we apply a Newton
iteration to solve this large nonlinear system.

Example

We discuss again the BVP (7.10) with parameter λ = 5. The grid (7.21) is
used for a = 0, b = 1 and m + 1 = 50. According to (7.25), the nonlinear
system is

uj+1 − 2uj + uj−1 = h2λ sin(2πuj) for j = 1, 2, . . . ,m. (7.26)

The boundary conditions allow to eliminate the unknowns u0 = 0, um+1 = 1
directly. Hence the nonlinear system (7.26) consists of m equations for the
unknowns u1, . . . , um. We use an ordinary Newton iteration to obtain an
approximate solution. As starting values, we employ uj = jh for all j,
which corresponds to the exact solution in the case λ = 0. Fig. 29 depicts
the approximations, which appear after the first iteration step and after
the fourth iteration step. We observe just a small difference in these ap-
proximations, which indicates a fast convergence of the iteration. The finite
difference method yields the same solution as the single shooting method
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Figure 29: Approximations from finite difference method obtained by the first Newton step
(left) and by the fourth Newton step (right).

except for numerical errors of the techniques, cf. Fig. 27. Moreover, this
finite difference method succeeds in the case λ = 10 for the same starting
values, whereas the single shooting method fails for this parameter value
using comparable starting values.

Linear ODE of second order

We focus on linear ODEs of second order now and discuss consistency,
stability and convergence of a finite difference method in detail. We consider
the specific BVP

−y′′(x) + q(x)y(x) = g(x), y(a) = α, y(b) = β (7.27)

with predetermined functions q, g ∈ C[a, b]. The condition q(x) ≥ 0 implies
the existence of a unique solution. Moreover, we assume y ∈ C4[a, b]. Using
the symmetric difference formula (7.24), we define the local errors

τj := y′′(xj)−
y(xj+1)− 2y(xj) + y(xj−1)

h2
= −h

2

12
y(4)(xj + ϑjh). (7.28)

for j = 1, . . . ,m. The discretisation is consistent, since it holds

lim
h→0

τj = lim
h→0

−h
2

12
y(4)(xj + ϑjh) = 0
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uniformly for each j provided that y ∈ C4[a, b]. Note that h = b−a
m+1 .

The exact solution of the BVP (7.27) satisfies

y(x0) = α

−y(xj+1)−2y(xj)+y(xj−1)
h2 + q(xj)y(xj) = g(xj) + τj for j = 1, . . . ,m

y(xm+1) = β.

We define vectors

ŷ :=


y(x1)
y(x2)
...

y(xm−1)
y(xm)

 , τ :=


τ1
τ2
...

τm−1

τm

 , d :=


g(x1) +

α
h2

g(x2)
...

g(xm−1)

g(xm) +
β
h2


and a symmetric tridiagonal matrix A ∈ Rm×m

A :=
1

h2


2 + q(x1)h

2 −1
−1 2 + q(x2)h

2 −1
. . . . . . . . .

−1 2 + q(xm−1)h
2 −1

−1 2 + q(xm)h
2

 .

It follows
Aŷ = d+ τ. (7.29)

Since we do not know the local discretisation errors in τ , we solve the system

Au = d (7.30)

to achieve an approximation u = (u1, . . . , um).

To analyse the error e := u − ŷ ∈ R
m, we require the following lemma.

Thereby, we write A ≤ B for A = (aij) ∈ Rm×m and B = (bij) ∈ Rm×m if
aij ≤ bij holds for all i, j = 1, . . . ,m.
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Lemma 5 If q(xj) ≥ 0 holds for all j = 1, . . . ,m, then the symmetric
matrix A is positive definite and it holds 0 ≤ A−1 ≤ A−1

0 with the symmetric
and positive definite matrix

A0 :=
1

h2


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 .

The proof can be found in the book of Stoer/Bulirsch.

In particular, it follows that the linear system (7.30) owns a unique solu-
tion. We can use the Cholesky decomposition to solve the system (7.30).
However, an LU -decomposition (without pivoting) is more efficient in case
of tridiagonal matrices.

The property shown by Lemma 5 corresponds to the stability of the method.
Stability means the Lipschitz-continuous dependence of the numerical solu-
tion with respect to perturbations in the input data, where the Lipschitz-
constants are independent of the step size of a discretisation.

Theorem 18 We consider Au = r and Aũ = r̃ with the matrix A from
above and arbitrary right-hand sides r, r̃. If the property q(xj) ≥ 0 holds for
all j = 1, . . . ,m, then it follows

max
j=1,...,m

|uj − ũj| ≤ 1
2(b− a)2 max

j=1,...,m
|rj − r̃j|.

Proof:

Let A−1 = (āij) and A
−1
0 = (ā0ij). Lemma 5 implies 0 ≤ āij ≤ ā0ij. We define

ρ := max
l=1,...,m

|rl − r̃l|.
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We have A(u− ũ) = r− r̃. It follows u− ũ = A−1(r− r̃) and component-wise

|ui − ũi| =

∣∣∣∣∣
m∑
j=1

āij(rj − r̃j)

∣∣∣∣∣ ≤
m∑
j=1

|āij| · |rj − r̃j| ≤ ρ
m∑
j=1

|āij|

= ρ
m∑
j=1

āij ≤ ρ
m∑
j=1

ā0ij = ρ
m∑
j=1

ā0ij · 1.

Using the notation

|u| := (|u1|, . . . , |um|)⊤ ∈ Rm,

it follows
|u− ũ| ≤ ρA−1

0 1

with 1 := (1, . . . , 1)⊤ ∈ Rm.

Now we calculate A−1
0 1 directly. Consider the auxiliary BVP

−y′′(x) = 1, y(a) = y(b) = 0. (7.31)

The exact solution reads y(x) = 1
2(x − a)(b − x). Since y(4) ≡ 0 holds, the

local errors (7.28) are zero. The finite difference method applied to (7.31)
yields the linear system A0ŷ = 1. It follows ŷ = A−1

0 1 and(
A−1

0 1
)
i
= y(xi) =

1
2(xi − a)(b− xi).

We achieve the estimate

(A−1
0 1)i ≤ 1

2(b− a)2 for i = 1, . . . ,m ,

which confirms the statement of the theorem. □

We conclude that the property q(x) ≥ 0 is sufficient for the stability of the
finite difference method, since the Lipschitz-constant 1

2(b−a)
2 in Theorem 18

is independent of h or, equivalently, m. The relation u − ũ = A−1(r − r̃)
implies directly

∥u− ũ∥∞ = ∥A−1∥∞ · ∥r − r̃∥∞.
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However, A and thus A−1 depend on m. Theorem 18 yields the uniform
bound

∥A−1∥∞ ≤ 1
2(b− a)2 for all m.

Note that the stability criterion of multistep methods for IVPs also repre-
sents a uniform bound, cf. Sect. 4.3.

Concerning the convergence of the finite difference method, we achieve the
following theorem, which employs the consistency and the stability of the
technique.

Theorem 19 Assume that the linear BVP (7.27) exhibits a unique solution
y ∈ C4[a, b] with |y(4)(x)| ≤ M for all x ∈ [a, b]. Let q(x) ≥ 0 for all x.
Then the approximation u from (7.30) satisfies

max
j=1,...,m

|uj − y(xj)| ≤
M

24
(b− a)2h2,

i.e., the finite difference method is convergent of order two.

Proof:

For the solution of the systems Aŷ = d + τ (7.29) and Au = d (7.30),
Theorem 18 implies (r̃ − r = τ)

max
j=1,...,m

|uj − y(xj)| ≤ 1
2(b− a)2 max

j=1,...,m
|τj|.

The local errors (7.28) satisfy the estimate

|τj| ≤
M

12
h2 for all j = 1, . . . ,m

due to |y(4)(x)| ≤M for all x ∈ [a, b]. Thus the convergence is verified. □

We recognise that the order of convergence coincides with the order of con-
sistency present in the discretisation.
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7.5 Techniques with Trial Functions

A different approach to solve the BVP (7.1),(7.2) numerically uses trial
functions (also: ansatz functions) to approximate the solution. For simplic-
ity, we consider the scalar case n = 1, i.e., y : [a, b] → R. We specify a
linear combination

u(x;α1, . . . , αk) := v0(x) +
k∑

l=1

αlvl(x) (7.32)

for α1, . . . , αk ∈ R with predetermined linearly independent trial functions

v0, v1, . . . , vk : [a, b] → R, Vk := span{v1, . . . , vk}. (7.33)

The trial functions shall be smooth, i.e., vl ∈ C1[a, b] for all l. The scalar
coefficients α1, . . . , αk ∈ R are unknown. It holds u ∈ v0 + Vk. The fixed
function v0 can be used to match the boundary condition. Otherwise se-
lect v0 ≡ 0. We demand that each linear combination satisfies the boundary
conditions, i.e.,

r(u(a;α1, . . . , αk), u(b;α1, . . . , αk)) = 0 for all α1, . . . , αk. (7.34)

Furthermore, the trial functions shall be elementary such that the derivative

u′(x;α1, . . . , αk) = v′0(x) +
k∑

l=1

αlv
′
l(x)

can be evaluated easily.

A special case represent IVPs y′ = f(x, y), y(a) = y0 for x ∈ [a, b]. We can
choose polynomials as trial functions. It follows (v0 = y0, vl = (x− a)l)

u(x;α1, . . . , αk) = y0 +
k∑

l=1

αl(x− a)l.

The initial condition is always fulfilled. In a collocation method, the co-
efficients are determined such that the ODE is satisfied at certain points
xj ∈ [a, b] for j = 1, . . . , k, cf. Sect. 5.4.
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For periodic BVPs (7.7), trigonometric polynomials are applied as trial
functions

u(x;α0, α1, . . . , αk, β1, . . . , βk) :=
α0

2
+

k∑
l=1

αl sin
(
2π
T x
)
+ βl cos

(
2π
T x
)
,

(7.35)
where a function space V with dim(V ) = 2k + 1 appears (v0 ≡ 0). Each
trial function is periodic and thus the linear combination is also periodic.

Since u always satisfies the boundary conditions due to (7.34), we have to
determine the coefficients such that a good approximation of the solution
of the ODE-BVP is achieved. To quantify the accuracy, we define the
residual q : [a, b] → R of u via

q(x;α1, . . . , αk) := u′(x;α1, . . . , αk)− f(x, u(x;α1, . . . , αk)). (7.36)

For v0, . . . , vk ∈ C1[a, b] and f continuous, the residual satisfies q ∈ C[a, b].
If f is nonlinear, then q depends nonlinearly on the coefficients α1, . . . , αk.
The residual of the exact solution is equal to zero. Consequently, we want
that the residual of u becomes small in some sense. There are several
possibilities to determine the according coefficients:

1. Minimisation:
We apply the integral norm ∥ · ∥ : C[a, b] → R of the residual

∥q(·;α1, . . . , αk)∥2 :=
∫ b

a

q(x;α1, . . . , αk)
2 dx. (7.37)

Now the coefficients α̂1, . . . , α̂k are determined such that the norm is
minimised, i.e.,

∥q(·; α̂1, . . . , α̂k)∥ ≤ ∥q(·;α1, . . . , αk)∥ for all α1, . . . , αk.

However, a minimisation procedure demands a relatively large com-
putational effort. Thus this approach is usually not used in practice.
We do not want an optimisation problem for the coefficients but a
nonlinear system of algebraic equations for the coefficients.
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2. Method of weighted residuals / Galerkin approach:
In this strategy, we apply the inner product corresponding to the inte-
gral norm (7.37). Let ⟨·, ·⟩ : C[a, b]× C[a, b] → R be defined by

⟨g, h⟩ :=
∫ b

a

g(x) · h(x) dx for g, h ∈ C[a, b].

Now the idea is to choose a second set of linearly independent functions

w1, . . . , wk : [a, b] → R, Wk := span{w1, . . . , wk}, (7.38)

which are called test functions. In contrast to the trial functions (7.33),
test functions wl ∈ C[a, b] are also sufficient. Now we demand that the
residual is orthogonal to the space Wk, i.e.,

⟨q(·;α1, . . . , αk), wj(·)⟩ = 0 for all j = 1, . . . , k. (7.39)

Hence we obtain k nonlinear equations for the coefficients α1, . . . , αk.
If the space Wk contains good approximations of all possible resid-
uals, then the condtion (7.39) produces a specific u with a residual,
which is close to the minimum of all residuals. Thus the test functions
should approximate all possible residuals, whereas the trial functions
approximate the exact solution.

In the special case v0 ≡ 0, w1 ≡ v1, . . . , wk ≡ vk, the test func-
tions (7.38) coincide with the trial functions (7.33), i.e., Vk = Wk. This
approach is called Galerkin method. The advantage is that the con-
struction of a second set of functions is not necessary. Moreover, sym-
metric and positive definite matrices result in the case of linear ODEs.
For example, the Galerkin method is suitable for periodic BVPs (7.7)
with trial functions (7.35). Using a large degree k, the trigonometric
polynomials yield good approximations for a broad class of periodic
functions. The exact solution of (7.7) as well as the residual for (7.35)
are periodic. Thus it is reasonable to choose the same space for trial
functions and test functions.
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3. Collocation method:
Another approach is to demand simply that the residual vanishes at
k prescribed points a ≤ x1 < x2 < · · · < xk ≤ b. We achieve the
nonlinear system

q(xj;α1, . . . , αk) = 0 for j = 1, . . . , k (7.40)

including the unknown coefficients.

Example: ODE of second order

We consider the BVP y′′ = f(x, y), y(a) = α, y(b) = β of an ODE of second
order. Just replace the first by the second derivative in the above examples.
The method of weighted residuals implies the nonlinear system∫ b

a

(
v′′0(x) +

k∑
l=1

αlv
′′
l (x)− f

(
x, v0(x) +

k∑
l=1

αlvl(x)

))
· wj(x) dx = 0

for j = 1, . . . , k to determine the coefficients α1, . . . , αk.

We arrange the trial functions

v0(x) = a+
β − α

b− a
(x− a), vl(x) = xl−1(x− a)(x− b) for l ≥ 1.

The function v0 satisfies the demanded boundary conditions, whereas it
holds vl(a) = vl(b) = 0 for l ≥ 1. We recognise that v0 + Vk ⊂ Pk+1 and
v0+Vk ̸= Pk+1. Although dim(Pk+1) = k+2, the degrees of freedom reduce
to k coefficients due to the two boundary conditions. As test functions, we
choose polynomials wl(x) := xl−1 and thus

Wk = span
{
1, x, x2, . . . , xk−1

}
= Pk−1.

For example, we arrange the linear BVP y′′ = λy, y(0) = 0, y(1) = 1 with
λ > 0, say λ = 25. It follows v0 ≡ x. The method of the weighted residuals
yields ∫ 1

0

(
k∑

l=1

αlv
′′
l (x)− λ

(
v0(x) +

k∑
l=1

αlvl(x)

))
· wj(x) dx = 0,
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which is equivalent to

k∑
l=1

αl

(∫ 1

0

(v′′l (x)− λvl(x))wj(x) dx

)
= λ

∫ 1

0

v0(x)wj(x) dx

for j = 1, . . . , k. We obtain a linear system for α1, . . . , αk. The corre-
sponding matrix is dense in contrast to finite difference methods. Since all
involved functions are polynomials, the required integrals can be calculated
analytically. Fig. 30 illustrates the approximations of this technique for
k = 1, 2, 3, 4. Futhermore, the corresponding maximum errors

max
x∈[0,1]

|u(x;α1, . . . , αk)− y(x)| with y(x) =
sinh(5x)

sinh(5)

are shown in Fig. 31. We observe that the error decreases exponentially for
increasing dimension k in this academic example.

Galerkin method for periodic problems

We consider a scalar ODE y′ = f(x, y) with the periodic boundary condi-
tions (7.7). The trial functions are the trigonometric polynomials (7.35).
We apply the complex formulation

vl(x) = eiωlx for l = −k, . . . , k (7.41)

with the imaginary unit i =
√
−1 and the frequency ω = 2π

T . The according
inner product ⟨·, ·⟩ : C[a, b]× C[a, b] → C reads

⟨g, h⟩ := 1

T

∫ T

0

g(x) · h(x) dx.

The basis functions (7.41) are orthonormal, i.e.,

⟨vl, vj⟩ =
{

1 for l = j,
0 for l ̸= j.

Furthermore, it holds

v′l(x) = iωleiωlx = iωlvl(x).
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Figure 30: Approximations from method of weighted residuals using k trial functions (solid
lines) and exact solution of ODE-BVP (dashed lines).
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Figure 31: Maximum absolute errors in method of weighted residuals using k trial function
(semi-logarithmic scale).
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We apply the Galerkin method, i.e., the test functions wl = vl. The condi-
tion ⟨q, vj⟩ = 0 for the residual q yields⟨

k∑
l=−k

αlv
′
l(x), vj(x)

⟩
−

⟨
f

(
x,

k∑
l=−k

αlvl(x)

)
, vj(x)

⟩
= 0

for j = −k, . . . , k. It follows

(iωj) · αj −

⟨
f

(
x,

k∑
l=−k

αlvl(x)

)
, vj(x)

⟩
= 0

for j = −k, . . . , k. We apply the notation

Z :=

α−k
...
αk

 , P :=

⟨f, v−k⟩
...

⟨f, vk⟩

 , Ω := iω

−k
. . .

k

 .

It follows the nonlinear system

G(Z) :≡ ΩZ − P (Z) = 0.

However, we cannot evaluate the integrals of the inner products exactly for
a general nonlinear function f . Hence we apply a quadrature scheme. For
periodic integrands, trapezoidal rule with 2k+1 equidistant nodes xj = jh
is the most efficient method. Let

yj :=
k∑

l=−k

αlvl(xj) (7.42)

and Y := (y0, . . . , y2k)
⊤. The trapezoidal rule yields

⟨f, vj⟩
.
=
h

T

2k∑
l=0

f(xl, yl) · vj(xl) =
h

T

2k∑
l=0

f(xl, yl) · v−j(xl). (7.43)

Let E(Y ) := (f(x0, y0), . . . , f(x2k, y2k))
⊤ ∈ C2k+1.

The step (7.42) corresponds to an inverse (discrete) Fourier transformation,
since it represents the evaluation of trigonometric polynomials. Thus it
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holds Y = F−1Z with a matrix F−1. The evaluations (7.43) can be written
as a (discrete) Fourier transformation, i.e., P

.
= FE(Y ) with a matrix F .

It holds FF−1 = σI. Hence the Galerkin method can be summerised by

G(Z) ≡ ΩZ −FE(F−1(Z)) = 0

with a function G : C2k+1 → C
2k+1. We obtain a nonlinear system for the

coefficients Z, since the mapping E : C2k+1 → C
2k+1 is nonlinear. The

corresponding Jacobian matrix reads

DG = Ω−F · ∂E
∂Y

· F−1.

The matrix ∂E
∂Y consists of Jacobian matrices Df . All steps, where trans-

formations with the matrices F ,F−1 are involved, can be done efficiently
by fast Fourier transformation (FFT). Furthermore, an equivalent Galerkin
method with real numbers only can be constructed using (7.35).

This particular Galerkin approach represents a method in frequency do-
main, since the unknowns are the Fourier coefficients Z. For simulating
electric circuit, this method is called harmonic balance. In contrast, a finite
difference method is a technique in time domain (x often represents the
time). The above Galerkin approach is more efficient than a finite differ-
ence method, if the number k of basis functions required for a sufficiently
accurate approximation is relatively low.

Outlook: Variational Methods

Another class of numerical techniques for solving boundary value prob-
lems of systems of ODEs are the variational methods. These techniques
apply to some important types of problems, where the solutions possess
certain minimality properties. For further reading, we refer to the book of
Stoer/Bulirsch (Section 7.5).
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